메뉴 건너뛰기




Volumn 38, Issue , 2014, Pages 31-39

Numerical solution of fractional telegraph equation by using radial basis functions

Author keywords

Fractional derivative; Fractional telegraph equation; Radial basis functions

Indexed keywords

CAPUTO SENSE; FINITE DIFFERENCE SCHEME; FRACTIONAL DERIVATIVES; FRACTIONAL TELEGRAPH EQUATIONS; NUMERICAL RESULTS; NUMERICAL SOLUTION; RADIAL BASIS FUNCTIONS; TELEGRAPH EQUATION;

EID: 84887273517     PISSN: 09557997     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enganabound.2013.10.009     Document Type: Article
Times cited : (150)

References (36)
  • 1
    • 79959968012 scopus 로고    scopus 로고
    • A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions
    • Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini, and G.B. Loghmani A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions J Math Phys 52 2011 1 15
    • (2011) J Math Phys , vol.52 , pp. 1-15
    • Avazzadeh, Z.1    Beygi Rizi, Z.2    Maalek Ghaini, F.M.3    Loghmani, G.B.4
  • 2
    • 84856223560 scopus 로고    scopus 로고
    • A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions
    • Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini, and G.B. Loghmani A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions Eng Anal Boundary Elem 36 2012 881 893
    • (2012) Eng Anal Boundary Elem , vol.36 , pp. 881-893
    • Avazzadeh, Z.1    Beygi Rizi, Z.2    Maalek Ghaini, F.M.3    Loghmani, G.B.4
  • 4
    • 76449111034 scopus 로고    scopus 로고
    • Anomalous diffusion modeling by fractal and fractional derivatives
    • W. Chen, H. Sun, X. Zhang, and D. Korošakb Anomalous diffusion modeling by fractal and fractional derivatives J Comput Math Appl 59 2010 1754 1758
    • (2010) J Comput Math Appl , vol.59 , pp. 1754-1758
    • Chen, W.1    Sun, H.2    Zhang, X.3    Korošakb, D.4
  • 5
    • 76449113714 scopus 로고    scopus 로고
    • Fractional diffusion equation by the Kansa method
    • W. Chen, Y. Le, and H. Sun Fractional diffusion equation by the Kansa method Comput Math Appl 59 2010 1614 1620
    • (2010) Comput Math Appl , vol.59 , pp. 1614-1620
    • Chen, W.1    Le, Y.2    Sun, H.3
  • 7
    • 79953189314 scopus 로고    scopus 로고
    • An approximate analytical solution of time-fractional telegraph equation
    • S. Das, K. Vishal, PK. Gupta, and A. Yildirim An approximate analytical solution of time-fractional telegraph equation Appl Math Comput 217 2011 7405 7411
    • (2011) Appl Math Comput , vol.217 , pp. 7405-7411
    • Das, S.1    Vishal, K.2    Gupta, P.K.3    Yildirim, A.4
  • 8
    • 79251549814 scopus 로고    scopus 로고
    • The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
    • M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int J Numer Methods Biomed Eng 27 2011 219 231
    • (2011) Int J Numer Methods Biomed Eng , vol.27 , pp. 219-231
    • Dehghan, M.1    Yousefi, S.A.2    Lotfi, A.3
  • 9
    • 67349194320 scopus 로고    scopus 로고
    • Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
    • M. Dehghan, and A. Shokri Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions J Comput Appl Math 230 2009 400 410
    • (2009) J Comput Appl Math , vol.230 , pp. 400-410
    • Dehghan, M.1    Shokri, A.2
  • 10
    • 47049124300 scopus 로고    scopus 로고
    • A numerical method for solving the hyperbolic telegraph equation
    • M. Dehghan, and A. Shokri A numerical method for solving the hyperbolic telegraph equation Numer Methods Partial Differ Equ 24 2008 1018 1093
    • (2008) Numer Methods Partial Differ Equ , vol.24 , pp. 1018-1093
    • Dehghan, M.1    Shokri, A.2
  • 11
    • 77951184169 scopus 로고    scopus 로고
    • An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation
    • Y.T. Gu, P. Zhuang, and F. Liu An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation Comput Modeling Eng Sci 56 2010 303 334
    • (2010) Comput Modeling Eng Sci , vol.56 , pp. 303-334
    • Gu, Y.T.1    Zhuang, P.2    Liu, F.3
  • 12
    • 84873345058 scopus 로고    scopus 로고
    • An efficient new perturbative Laplace method for space-time fractional telegraph
    • Y. Khan, J. Diblík, N. Faraz, and Z. Šmarda An efficient new perturbative Laplace method for space-time fractional telegraph Adv Differ Equ 204 2012 1 9
    • (2012) Adv Differ Equ , vol.204 , pp. 1-9
    • Khan, Y.1    Diblík, J.2    Faraz, N.3    Šmarda, Z.4
  • 14
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • C. Li, Z. Zhao, and Y. Chen Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput Math Appl 62 2011 855 875
    • (2011) Comput Math Appl , vol.62 , pp. 855-875
    • Li, C.1    Zhao, Z.2    Chen, Y.3
  • 15
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. Li, and C. Xu A space-time spectral method for the time fractional diffusion equation SIAM J Numer Anal 47 2009 2108 2131
    • (2009) SIAM J Numer Anal , vol.47 , pp. 2108-2131
    • Li, X.1    Xu, C.2
  • 16
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J Comput Phys 225 2007 1533 1552
    • (2007) J Comput Phys , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 17
    • 46049100549 scopus 로고    scopus 로고
    • A fractional-order implicit difference approximation for the space time fractional diffusion equation
    • F. Liu, P. Zhuang, V. Anh, and I. Turner A fractional-order implicit difference approximation for the space time fractional diffusion equation ANZIAM J 47 2006 C48 C68
    • (2006) ANZIAM J , vol.47
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4
  • 18
    • 0002642902 scopus 로고
    • Multivariate interpolation and conditionally positive definite functions
    • W.R. Madych, and S.A. Nelson Multivariate interpolation and conditionally positive definite functions Approx Theory Appl 4 1988 77 89
    • (1988) Approx Theory Appl , vol.4 , pp. 77-89
    • Madych, W.R.1    Nelson, S.A.2
  • 19
    • 84966244353 scopus 로고
    • Multivariate interpolation and conditionally positive definite functions II
    • W.R. Madych, and S.A. Nelson Multivariate interpolation and conditionally positive definite functions II Math Comput 54 1990 211 230
    • (1990) Math Comput , vol.54 , pp. 211-230
    • Madych, W.R.1    Nelson, S.A.2
  • 20
    • 38249020082 scopus 로고
    • Polyharmonic cardinal splines
    • W.R. Madych, and S.A. Nelson Polyharmonic cardinal splines J Approx Theory 60 1990 141 156
    • (1990) J Approx Theory , vol.60 , pp. 141-156
    • Madych, W.R.1    Nelson, S.A.2
  • 21
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Constr Approx 2 1986 11 22
    • (1986) Constr Approx , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 23
    • 84872393421 scopus 로고    scopus 로고
    • The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics
    • A. Mohebbi, M. Abbaszadeh, and M. Dehghan The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics Eng Anal Boundary Elem 37 2013 475 485
    • (2013) Eng Anal Boundary Elem , vol.37 , pp. 475-485
    • Mohebbi, A.1    Abbaszadeh, M.2    Dehghan, M.3
  • 24
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space- and time-fractional telegraph equations
    • DOI 10.1016/j.amc.2005.01.009, PII S0096300305000536
    • S. Momani Analytic and approximate solutions of the space- and time-fractional telegraph equations Appl Math Comput 170 2005 1126 1134 (Pubitemid 41497822)
    • (2005) Applied Mathematics and Computation , vol.170 , Issue.2 , pp. 1126-1134
    • Momani, S.1
  • 26
    • 0037254447 scopus 로고    scopus 로고
    • The space-fractional telegraph equation and the related fractional telegraph process
    • DOI 10.1142/S0252959903000050
    • E. Orsingher, and X. Zhao The space-fractional telegraph equation and the related fractional telegraph process Chin Ann Math 24 2003 45 56 (Pubitemid 36420465)
    • (2003) Chinese Annals of Mathematics. Series B , vol.24 , Issue.1 , pp. 45-56
    • Orsingher, E.1    Zhao, X.2
  • 27
    • 84873162810 scopus 로고    scopus 로고
    • A radial basis functions method for fractional diffusion equations
    • C. Piret, and E. Hanert A radial basis functions method for fractional diffusion equations J Comput Phys 238 2013 71 81
    • (2013) J Comput Phys , vol.238 , pp. 71-81
    • Piret, C.1    Hanert, E.2
  • 29
    • 21344480607 scopus 로고
    • The uniform convergence of thin plate spline interpolation in two dimensions
    • M.J.D. Powell The uniform convergence of thin plate spline interpolation in two dimensions Numer Math 68 1994 107 128
    • (1994) Numer Math , vol.68 , pp. 107-128
    • Powell, M.J.D.1
  • 30
    • 0030503790 scopus 로고    scopus 로고
    • Approximation by radial basis functions with finitely many centers
    • R. Schaback Approximation by radial basis functions with finitely many centers Constr Approx 12 1996 331 340
    • (1996) Constr Approx , vol.12 , pp. 331-340
    • Schaback, R.1
  • 31
    • 84894731513 scopus 로고    scopus 로고
    • Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation
    • doi:10.1007/s10092-013-0084-6
    • Wei L, Dai H, Zhang D, Si Z. Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 2013. http://dx.doi.org/10.1007/s10092-013-0084-6.
    • (2013) Calcolo
    • Wei, L.1    Dai, H.2    Zhang, D.3    Si, Z.4
  • 32
    • 14544290310 scopus 로고
    • Local error estimates for radial basis function interpolation of scattered data
    • Z.M. Wu, and R. Schaback Local error estimates for radial basis function interpolation of scattered data IMA J Numer Anal 13 1993 13 27
    • (1993) IMA J Numer Anal , vol.13 , pp. 13-27
    • Wu, Z.M.1    Schaback, R.2
  • 33
    • 78249267580 scopus 로고    scopus 로고
    • He's homotopy perturbation method for solving the space- and time-fractional telegraph equations
    • A. Yildirim He's homotopy perturbation method for solving the space- and time-fractional telegraph equations Int J Comput Math 87 2010 2998 3006
    • (2010) Int J Comput Math , vol.87 , pp. 2998-3006
    • Yildirim, A.1
  • 34
    • 84876518298 scopus 로고    scopus 로고
    • Stability and convergence of an effective finite element method for multiterm fractional partial differential equations
    • J. Zhao, J. Xiao, and Y. Xu Stability and convergence of an effective finite element method for multiterm fractional partial differential equations Abstr Appl Anal 2013 1 10
    • (2013) Abstr Appl Anal , pp. 1-10
    • Zhao, J.1    Xiao, J.2    Xu, Y.3
  • 35
    • 84868451071 scopus 로고    scopus 로고
    • Fractional difference/finite element approximation for the time-space fractional telegraph equation
    • Z. Zhao, and C. Li Fractional difference/finite element approximation for the time-space fractional telegraph equation J Appl Math Comput 219 2012 2975 2988
    • (2012) J Appl Math Comput , vol.219 , pp. 2975-2988
    • Zhao, Z.1    Li, C.2
  • 36
    • 81955168106 scopus 로고    scopus 로고
    • Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method
    • P. Zhuang, Y.T. Gu, F. Liu, I. Turner, and P.K.D.V. Yarlagadda Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method Int J Numer Methods Eng 88 2011 1346 1362
    • (2011) Int J Numer Methods Eng , vol.88 , pp. 1346-1362
    • Zhuang, P.1    Gu, Y.T.2    Liu, F.3    Turner, I.4    Yarlagadda, P.K.D.V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.