-
1
-
-
79959968012
-
A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions
-
Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini, and G.B. Loghmani A semi-discrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions J Math Phys 52 2011 1 15
-
(2011)
J Math Phys
, vol.52
, pp. 1-15
-
-
Avazzadeh, Z.1
Beygi Rizi, Z.2
Maalek Ghaini, F.M.3
Loghmani, G.B.4
-
2
-
-
84856223560
-
A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions
-
Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini, and G.B. Loghmani A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions Eng Anal Boundary Elem 36 2012 881 893
-
(2012)
Eng Anal Boundary Elem
, vol.36
, pp. 881-893
-
-
Avazzadeh, Z.1
Beygi Rizi, Z.2
Maalek Ghaini, F.M.3
Loghmani, G.B.4
-
4
-
-
76449111034
-
Anomalous diffusion modeling by fractal and fractional derivatives
-
W. Chen, H. Sun, X. Zhang, and D. Korošakb Anomalous diffusion modeling by fractal and fractional derivatives J Comput Math Appl 59 2010 1754 1758
-
(2010)
J Comput Math Appl
, vol.59
, pp. 1754-1758
-
-
Chen, W.1
Sun, H.2
Zhang, X.3
Korošakb, D.4
-
5
-
-
76449113714
-
Fractional diffusion equation by the Kansa method
-
W. Chen, Y. Le, and H. Sun Fractional diffusion equation by the Kansa method Comput Math Appl 59 2010 1614 1620
-
(2010)
Comput Math Appl
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Le, Y.2
Sun, H.3
-
7
-
-
79953189314
-
An approximate analytical solution of time-fractional telegraph equation
-
S. Das, K. Vishal, PK. Gupta, and A. Yildirim An approximate analytical solution of time-fractional telegraph equation Appl Math Comput 217 2011 7405 7411
-
(2011)
Appl Math Comput
, vol.217
, pp. 7405-7411
-
-
Das, S.1
Vishal, K.2
Gupta, P.K.3
Yildirim, A.4
-
8
-
-
79251549814
-
The use of He's variational iteration method for solving the telegraph and fractional telegraph equations
-
M. Dehghan, S.A. Yousefi, and A. Lotfi The use of He's variational iteration method for solving the telegraph and fractional telegraph equations Int J Numer Methods Biomed Eng 27 2011 219 231
-
(2011)
Int J Numer Methods Biomed Eng
, vol.27
, pp. 219-231
-
-
Dehghan, M.1
Yousefi, S.A.2
Lotfi, A.3
-
9
-
-
67349194320
-
Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
-
M. Dehghan, and A. Shokri Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions J Comput Appl Math 230 2009 400 410
-
(2009)
J Comput Appl Math
, vol.230
, pp. 400-410
-
-
Dehghan, M.1
Shokri, A.2
-
10
-
-
47049124300
-
A numerical method for solving the hyperbolic telegraph equation
-
M. Dehghan, and A. Shokri A numerical method for solving the hyperbolic telegraph equation Numer Methods Partial Differ Equ 24 2008 1018 1093
-
(2008)
Numer Methods Partial Differ Equ
, vol.24
, pp. 1018-1093
-
-
Dehghan, M.1
Shokri, A.2
-
11
-
-
77951184169
-
An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation
-
Y.T. Gu, P. Zhuang, and F. Liu An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation Comput Modeling Eng Sci 56 2010 303 334
-
(2010)
Comput Modeling Eng Sci
, vol.56
, pp. 303-334
-
-
Gu, Y.T.1
Zhuang, P.2
Liu, F.3
-
12
-
-
84873345058
-
An efficient new perturbative Laplace method for space-time fractional telegraph
-
Y. Khan, J. Diblík, N. Faraz, and Z. Šmarda An efficient new perturbative Laplace method for space-time fractional telegraph Adv Differ Equ 204 2012 1 9
-
(2012)
Adv Differ Equ
, vol.204
, pp. 1-9
-
-
Khan, Y.1
Diblík, J.2
Faraz, N.3
Šmarda, Z.4
-
14
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
C. Li, Z. Zhao, and Y. Chen Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput Math Appl 62 2011 855 875
-
(2011)
Comput Math Appl
, vol.62
, pp. 855-875
-
-
Li, C.1
Zhao, Z.2
Chen, Y.3
-
15
-
-
77958536189
-
A space-time spectral method for the time fractional diffusion equation
-
X. Li, and C. Xu A space-time spectral method for the time fractional diffusion equation SIAM J Numer Anal 47 2009 2108 2131
-
(2009)
SIAM J Numer Anal
, vol.47
, pp. 2108-2131
-
-
Li, X.1
Xu, C.2
-
16
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J Comput Phys 225 2007 1533 1552
-
(2007)
J Comput Phys
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
17
-
-
46049100549
-
A fractional-order implicit difference approximation for the space time fractional diffusion equation
-
F. Liu, P. Zhuang, V. Anh, and I. Turner A fractional-order implicit difference approximation for the space time fractional diffusion equation ANZIAM J 47 2006 C48 C68
-
(2006)
ANZIAM J
, vol.47
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
-
18
-
-
0002642902
-
Multivariate interpolation and conditionally positive definite functions
-
W.R. Madych, and S.A. Nelson Multivariate interpolation and conditionally positive definite functions Approx Theory Appl 4 1988 77 89
-
(1988)
Approx Theory Appl
, vol.4
, pp. 77-89
-
-
Madych, W.R.1
Nelson, S.A.2
-
19
-
-
84966244353
-
Multivariate interpolation and conditionally positive definite functions II
-
W.R. Madych, and S.A. Nelson Multivariate interpolation and conditionally positive definite functions II Math Comput 54 1990 211 230
-
(1990)
Math Comput
, vol.54
, pp. 211-230
-
-
Madych, W.R.1
Nelson, S.A.2
-
20
-
-
38249020082
-
Polyharmonic cardinal splines
-
W.R. Madych, and S.A. Nelson Polyharmonic cardinal splines J Approx Theory 60 1990 141 156
-
(1990)
J Approx Theory
, vol.60
, pp. 141-156
-
-
Madych, W.R.1
Nelson, S.A.2
-
21
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Constr Approx 2 1986 11 22
-
(1986)
Constr Approx
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
23
-
-
84872393421
-
The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics
-
A. Mohebbi, M. Abbaszadeh, and M. Dehghan The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics Eng Anal Boundary Elem 37 2013 475 485
-
(2013)
Eng Anal Boundary Elem
, vol.37
, pp. 475-485
-
-
Mohebbi, A.1
Abbaszadeh, M.2
Dehghan, M.3
-
24
-
-
27144506208
-
Analytic and approximate solutions of the space- and time-fractional telegraph equations
-
DOI 10.1016/j.amc.2005.01.009, PII S0096300305000536
-
S. Momani Analytic and approximate solutions of the space- and time-fractional telegraph equations Appl Math Comput 170 2005 1126 1134 (Pubitemid 41497822)
-
(2005)
Applied Mathematics and Computation
, vol.170
, Issue.2
, pp. 1126-1134
-
-
Momani, S.1
-
26
-
-
0037254447
-
The space-fractional telegraph equation and the related fractional telegraph process
-
DOI 10.1142/S0252959903000050
-
E. Orsingher, and X. Zhao The space-fractional telegraph equation and the related fractional telegraph process Chin Ann Math 24 2003 45 56 (Pubitemid 36420465)
-
(2003)
Chinese Annals of Mathematics. Series B
, vol.24
, Issue.1
, pp. 45-56
-
-
Orsingher, E.1
Zhao, X.2
-
27
-
-
84873162810
-
A radial basis functions method for fractional diffusion equations
-
C. Piret, and E. Hanert A radial basis functions method for fractional diffusion equations J Comput Phys 238 2013 71 81
-
(2013)
J Comput Phys
, vol.238
, pp. 71-81
-
-
Piret, C.1
Hanert, E.2
-
29
-
-
21344480607
-
The uniform convergence of thin plate spline interpolation in two dimensions
-
M.J.D. Powell The uniform convergence of thin plate spline interpolation in two dimensions Numer Math 68 1994 107 128
-
(1994)
Numer Math
, vol.68
, pp. 107-128
-
-
Powell, M.J.D.1
-
30
-
-
0030503790
-
Approximation by radial basis functions with finitely many centers
-
R. Schaback Approximation by radial basis functions with finitely many centers Constr Approx 12 1996 331 340
-
(1996)
Constr Approx
, vol.12
, pp. 331-340
-
-
Schaback, R.1
-
31
-
-
84894731513
-
Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation
-
doi:10.1007/s10092-013-0084-6
-
Wei L, Dai H, Zhang D, Si Z. Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 2013. http://dx.doi.org/10.1007/s10092-013-0084-6.
-
(2013)
Calcolo
-
-
Wei, L.1
Dai, H.2
Zhang, D.3
Si, Z.4
-
32
-
-
14544290310
-
Local error estimates for radial basis function interpolation of scattered data
-
Z.M. Wu, and R. Schaback Local error estimates for radial basis function interpolation of scattered data IMA J Numer Anal 13 1993 13 27
-
(1993)
IMA J Numer Anal
, vol.13
, pp. 13-27
-
-
Wu, Z.M.1
Schaback, R.2
-
33
-
-
78249267580
-
He's homotopy perturbation method for solving the space- and time-fractional telegraph equations
-
A. Yildirim He's homotopy perturbation method for solving the space- and time-fractional telegraph equations Int J Comput Math 87 2010 2998 3006
-
(2010)
Int J Comput Math
, vol.87
, pp. 2998-3006
-
-
Yildirim, A.1
-
34
-
-
84876518298
-
Stability and convergence of an effective finite element method for multiterm fractional partial differential equations
-
J. Zhao, J. Xiao, and Y. Xu Stability and convergence of an effective finite element method for multiterm fractional partial differential equations Abstr Appl Anal 2013 1 10
-
(2013)
Abstr Appl Anal
, pp. 1-10
-
-
Zhao, J.1
Xiao, J.2
Xu, Y.3
-
35
-
-
84868451071
-
Fractional difference/finite element approximation for the time-space fractional telegraph equation
-
Z. Zhao, and C. Li Fractional difference/finite element approximation for the time-space fractional telegraph equation J Appl Math Comput 219 2012 2975 2988
-
(2012)
J Appl Math Comput
, vol.219
, pp. 2975-2988
-
-
Zhao, Z.1
Li, C.2
-
36
-
-
81955168106
-
Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method
-
P. Zhuang, Y.T. Gu, F. Liu, I. Turner, and P.K.D.V. Yarlagadda Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method Int J Numer Methods Eng 88 2011 1346 1362
-
(2011)
Int J Numer Methods Eng
, vol.88
, pp. 1346-1362
-
-
Zhuang, P.1
Gu, Y.T.2
Liu, F.3
Turner, I.4
Yarlagadda, P.K.D.V.5
|