메뉴 건너뛰기




Volumn 51, Issue 1, 2014, Pages 175-192

Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation

Author keywords

Error estimates; Fractional telegraph equation; Local discontinuous Galerkin method; Stability

Indexed keywords

FINITE ELEMENT METHOD; GALERKIN METHODS; NUMERICAL METHODS; TELEGRAPH;

EID: 84894731513     PISSN: 00080624     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10092-013-0084-6     Document Type: Article
Times cited : (41)

References (21)
  • 1
    • 79955482079 scopus 로고    scopus 로고
    • A new analytic solution for fractional chaotic dynamical systems using the differential transform method
    • Alomari, A. K.: A new analytic solution for fractional chaotic dynamical systems using the differential transform method. Comput. Math. Appl. 61, 2528-2534 (2011).
    • (2011) Comput. Math. Appl. , vol.61 , pp. 2528-2534
    • Alomari, A.K.1
  • 2
    • 67849097127 scopus 로고    scopus 로고
    • An approximation to the solution of telegraph equation by variational iteration method
    • Biazar, J., Ebrahimi, H., Ayati, Z.: An approximation to the solution of telegraph equation by variational iteration method. Numer. Methods Partial Differ. Equ. 25, 797-801 (2009).
    • (2009) Numer. Methods Partial Differ. Equ. , vol.25 , pp. 797-801
    • Biazar, J.1    Ebrahimi, H.2    Ayati, Z.3
  • 3
    • 0035734429 scopus 로고    scopus 로고
    • Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids
    • Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264-285 (2001).
    • (2001) SIAM J. Numer. Anal. , vol.39 , pp. 264-285
    • Cockburn, B.1    Kanschat, G.2    Perugia, I.3    Schotzau, D.4
  • 4
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204-226 (2008).
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.1
  • 5
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du, R., Cao, W. R., Sun, Z. Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998-3007 (2010).
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 6
    • 33646341532 scopus 로고    scopus 로고
    • Comparison of numerical methods for fractional differential equations
    • Ford, Neville J., Connolly, Joseph A.: Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5, 289-307 (2006).
    • (2006) Commun. Pure Appl. Anal. , vol.5 , pp. 289-307
    • Ford, N.J.1    Connolly, J.A.2
  • 8
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007).
    • (2007) J. Comput. Phys. , vol.225 , pp. 1533-1552
    • Lin, Y.1    Xu, C.2
  • 9
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855-875 (2011).
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.1    Zhao, Z.2    Chen, Y.3
  • 10
    • 43949160695 scopus 로고
    • Fractional model equation for anomalous diffusion
    • Metzler, R., Glöckle, W. G., Nonnenmacher, T. F.: Fractional model equation for anomalous diffusion. Phys. A 211, 13-24 (1994).
    • (1994) Phys. A , vol.211 , pp. 13-24
    • Metzler, R.1    Glöckle, W.G.2    Nonnenmacher, T.F.3
  • 11
    • 81755165572 scopus 로고    scopus 로고
    • A generalization of H-measures and application on purely fractional scalar conservation laws
    • Mitrovic, D., Ivec, I.: A generalization of H-measures and application on purely fractional scalar conservation laws. Commun. Pure Appl. Anal. 10, 1617-1627 (2011).
    • (2011) Commun. Pure Appl. Anal. , vol.10 , pp. 1617-1627
    • Mitrovic, D.1    Ivec, I.2
  • 12
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space- and time-fractional telegraph equations
    • Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126-1134 (2005).
    • (2005) Appl. Math. Comput. , vol.170 , pp. 1126-1134
    • Momani, S.1
  • 13
    • 77952597982 scopus 로고    scopus 로고
    • Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method
    • Momani, S., Yildirim, A.: Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method. Int. J. Comput. Math. 87, 1057-1065 (2010).
    • (2010) Int. J. Comput. Math. , vol.87 , pp. 1057-1065
    • Momani, S.1    Yildirim, A.2
  • 14
    • 46049119633 scopus 로고    scopus 로고
    • Implicite finite difference approximation for time fractional diffusion equations
    • Murio, D.: Implicite finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138-1145 (2008).
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1138-1145
    • Murio, D.1
  • 16
    • 80052641903 scopus 로고    scopus 로고
    • The local discontinuous Galerkin finite element method for Burger's equation
    • Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger's equation. Math. Comput. Model. 54, 2943-2954 (2011).
    • (2011) Math. Comput. Model. , vol.54 , pp. 2943-2954
    • Shao, L.1    Feng, X.2    He, Y.3
  • 17
    • 16844366209 scopus 로고    scopus 로고
    • Local discontinuous Galerkin methods for nonlinear Schrödinger equations
    • Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72-97 (2005).
    • (2005) J. Comput. Phys. , vol.205 , pp. 72-97
    • Xu, Y.1    Shu, C.-W.2
  • 18
    • 55349125734 scopus 로고    scopus 로고
    • Local discontinuous Galerkin method for the Camassa-Holm equation
    • Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998-2021 (2008).
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 1998-2021
    • Xu, Y.1    Shu, C.-W.2
  • 19
    • 67249166170 scopus 로고    scopus 로고
    • An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method
    • Yildirim, A.: An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 445-450 (2009).
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , pp. 445-450
    • Yildirim, A.1
  • 20
    • 78249267580 scopus 로고    scopus 로고
    • He's homtopy perturbation method for solving the space and time fractional telegraph equations
    • Yildirim, A.: He's homtopy perturbation method for solving the space and time fractional telegraph equations. Int. J. Comput. Math. 87, 2998-3006 (2010).
    • (2010) Int. J. Comput. Math. , vol.87 , pp. 2998-3006
    • Yildirim, A.1
  • 21
    • 77951248176 scopus 로고    scopus 로고
    • Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Internat
    • Yildirim, A.: Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Internat. J. Numer. Methods Heat Fluid Flow 20, 186-200 (2010).
    • (2010) J. Numer. Methods Heat Fluid Flow , vol.20 , pp. 186-200
    • Yildirim, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.