-
1
-
-
79955482079
-
A new analytic solution for fractional chaotic dynamical systems using the differential transform method
-
Alomari, A. K.: A new analytic solution for fractional chaotic dynamical systems using the differential transform method. Comput. Math. Appl. 61, 2528-2534 (2011).
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 2528-2534
-
-
Alomari, A.K.1
-
2
-
-
67849097127
-
An approximation to the solution of telegraph equation by variational iteration method
-
Biazar, J., Ebrahimi, H., Ayati, Z.: An approximation to the solution of telegraph equation by variational iteration method. Numer. Methods Partial Differ. Equ. 25, 797-801 (2009).
-
(2009)
Numer. Methods Partial Differ. Equ.
, vol.25
, pp. 797-801
-
-
Biazar, J.1
Ebrahimi, H.2
Ayati, Z.3
-
3
-
-
0035734429
-
Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids
-
Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264-285 (2001).
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, pp. 264-285
-
-
Cockburn, B.1
Kanschat, G.2
Perugia, I.3
Schotzau, D.4
-
4
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204-226 (2008).
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
5
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
Du, R., Cao, W. R., Sun, Z. Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998-3007 (2010).
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.R.2
Sun, Z.Z.3
-
6
-
-
33646341532
-
Comparison of numerical methods for fractional differential equations
-
Ford, Neville J., Connolly, Joseph A.: Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5, 289-307 (2006).
-
(2006)
Commun. Pure Appl. Anal.
, vol.5
, pp. 289-307
-
-
Ford, N.J.1
Connolly, J.A.2
-
7
-
-
0348230399
-
Time fractional advection dispersion equation
-
Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection dispersion equation. J. Comput. Appl. Math. 13, 233-245 (2003).
-
(2003)
J. Comput. Appl. Math.
, vol.13
, pp. 233-245
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
8
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007).
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
9
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855-875 (2011).
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 855-875
-
-
Li, C.1
Zhao, Z.2
Chen, Y.3
-
10
-
-
43949160695
-
Fractional model equation for anomalous diffusion
-
Metzler, R., Glöckle, W. G., Nonnenmacher, T. F.: Fractional model equation for anomalous diffusion. Phys. A 211, 13-24 (1994).
-
(1994)
Phys. A
, vol.211
, pp. 13-24
-
-
Metzler, R.1
Glöckle, W.G.2
Nonnenmacher, T.F.3
-
11
-
-
81755165572
-
A generalization of H-measures and application on purely fractional scalar conservation laws
-
Mitrovic, D., Ivec, I.: A generalization of H-measures and application on purely fractional scalar conservation laws. Commun. Pure Appl. Anal. 10, 1617-1627 (2011).
-
(2011)
Commun. Pure Appl. Anal.
, vol.10
, pp. 1617-1627
-
-
Mitrovic, D.1
Ivec, I.2
-
12
-
-
27144506208
-
Analytic and approximate solutions of the space- and time-fractional telegraph equations
-
Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126-1134 (2005).
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
13
-
-
77952597982
-
Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method
-
Momani, S., Yildirim, A.: Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method. Int. J. Comput. Math. 87, 1057-1065 (2010).
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 1057-1065
-
-
Momani, S.1
Yildirim, A.2
-
14
-
-
46049119633
-
Implicite finite difference approximation for time fractional diffusion equations
-
Murio, D.: Implicite finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138-1145 (2008).
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1138-1145
-
-
Murio, D.1
-
16
-
-
80052641903
-
The local discontinuous Galerkin finite element method for Burger's equation
-
Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger's equation. Math. Comput. Model. 54, 2943-2954 (2011).
-
(2011)
Math. Comput. Model.
, vol.54
, pp. 2943-2954
-
-
Shao, L.1
Feng, X.2
He, Y.3
-
17
-
-
16844366209
-
Local discontinuous Galerkin methods for nonlinear Schrödinger equations
-
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72-97 (2005).
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 72-97
-
-
Xu, Y.1
Shu, C.-W.2
-
18
-
-
55349125734
-
Local discontinuous Galerkin method for the Camassa-Holm equation
-
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998-2021 (2008).
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1998-2021
-
-
Xu, Y.1
Shu, C.-W.2
-
19
-
-
67249166170
-
An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method
-
Yildirim, A.: An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 445-450 (2009).
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, pp. 445-450
-
-
Yildirim, A.1
-
20
-
-
78249267580
-
He's homtopy perturbation method for solving the space and time fractional telegraph equations
-
Yildirim, A.: He's homtopy perturbation method for solving the space and time fractional telegraph equations. Int. J. Comput. Math. 87, 2998-3006 (2010).
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 2998-3006
-
-
Yildirim, A.1
-
21
-
-
77951248176
-
Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Internat
-
Yildirim, A.: Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Internat. J. Numer. Methods Heat Fluid Flow 20, 186-200 (2010).
-
(2010)
J. Numer. Methods Heat Fluid Flow
, vol.20
, pp. 186-200
-
-
Yildirim, A.1
|