메뉴 건너뛰기




Volumn 217, Issue 18, 2011, Pages 7405-7411

An approximate analytical solution of time-fractional telegraph equation

Author keywords

Fractional Brownian motion; Fractional time derivative; Homotopy analysis method; Telegraph equation

Indexed keywords

APPROXIMATE ANALYTICAL SOLUTIONS; APPROXIMATE SOLUTION; EXPLICIT SOLUTIONS; FRACTIONAL BROWNIAN MOTION; FRACTIONAL TELEGRAPH EQUATIONS; HISTORICAL MODELS; HOMOTOPY ANALYSIS METHOD; HOMOTOPY ANALYSIS METHODS; INITIAL VALUES; MATHEMATICAL TOOLS; NUMERICAL SOLUTION; TELEGRAPH EQUATION; TIME DERIVATIVE;

EID: 79953189314     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.02.030     Document Type: Article
Times cited : (61)

References (23)
  • 1
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • F. Mainardi Fractional calculus: some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractal and Fractional Calculus in Continuum Mechanics 1997 Springer-Verlag New York
    • (1997) Fractal and Fractional Calculus in Continuum Mechanics
    • Mainardi, F.1
  • 3
    • 77954268265 scopus 로고    scopus 로고
    • Fractional calculus: Integral and differential equations of fractional order
    • A. Carpinteri, F. Mainardi (Eds.) New York
    • R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, New York, 1997.
    • (1997) Fractals and Fractional Calculus
    • Gorenflo, R.1    Mainardi, F.2
  • 4
    • 0003548431 scopus 로고    scopus 로고
    • The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98
    • Freic Universitat, Berlin
    • A.Y. Luchko, R. Groreflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat, Berlin, 1998.
    • (1998) Fachbreich Mathematik und Informatik
    • Luchko, A.Y.1    Groreflo, R.2
  • 7
  • 8
    • 34249826970 scopus 로고    scopus 로고
    • A numerical algorithm for the solution of telegraph equations
    • DOI 10.1016/j.amc.2007.01.091, PII S0096300307001105
    • M.S. El-Azab, and M. El-Glamel A numerical algorithm for the solution of telegraph equation Applied Mathematics and Computation 190 2007 757 764 (Pubitemid 46856702)
    • (2007) Applied Mathematics and Computation , vol.190 , Issue.1 , pp. 757-764
    • El-Azab, M.S.1    El-Gamel, M.2
  • 9
    • 77951865153 scopus 로고    scopus 로고
    • Legendre multi wavelet Galerkin method for solving the hyperbolic telegraph equation
    • S.A. Yousefi Legendre multi wavelet Galerkin method for solving the hyperbolic telegraph equation Numerical Method for Partial Differential Equations 2008 doi:10.1002/num
    • (2008) Numerical Method for Partial Differential Equations
    • Yousefi, S.A.1
  • 10
    • 34247184613 scopus 로고    scopus 로고
    • Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation
    • DOI 10.1016/j.amc.2006.09.057, PII S0096300306012653
    • F. Gao, and C. Chi Unconditionally stable difference scheme for a one-space dimensional linear hyperbolic equation Applied Mathematics and Computation 187 2007 1272 1276 (Pubitemid 46627913)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1272-1276
    • Gao, F.1    Chi, C.2
  • 11
    • 70349970652 scopus 로고    scopus 로고
    • Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method
    • M. Dehghan, and A. Ghesmati Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method Engineering Analysis with Boundary Elements 34 2010 51 59
    • (2010) Engineering Analysis with Boundary Elements , vol.34 , pp. 51-59
    • Dehghan, M.1    Ghesmati, A.2
  • 12
    • 79251523524 scopus 로고    scopus 로고
    • Homotopy analysis method for solving fractional hyperbolic partial differential equations
    • S. Das, and P.K. Gupta Homotopy analysis method for solving fractional hyperbolic partial differential equations International Journal of Computer Mathematics 88 2011 578 588
    • (2011) International Journal of Computer Mathematics , vol.88 , pp. 578-588
    • Das, S.1    Gupta, P.K.2
  • 14
    • 0742323831 scopus 로고    scopus 로고
    • Time-fractional telegraph equations and telegraph processes with brownian time
    • DOI 10.1007/s00440-003-0309-8
    • E. Orsingher, and L. Beghin Time-fractional telegraph equations and telegraph processes with brownian time Probability Theory and Related Fields 128 2004 141 160 (Pubitemid 38157144)
    • (2004) Probability Theory and Related Fields , vol.128 , Issue.1 , pp. 141-160
    • Orsingher, E.1    Beghin, L.2
  • 15
    • 78449236821 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation
    • F. Huang Analytical solution for the time-fractional telegraph equation Journal of Applied Mathematics 2009 doi:10.1155/2009/890158
    • (2009) Journal of Applied Mathematics
    • Huang, F.1
  • 16
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space- and time-fractional telegraph equations
    • DOI 10.1016/j.amc.2005.01.009, PII S0096300305000536
    • S. Momani Analytic and approximate solutions of the space- and time-fractional telegraph equations Applied Mathematics and Computation 170 2005 1126 1134 (Pubitemid 41497822)
    • (2005) Applied Mathematics and Computation , vol.170 , Issue.2 , pp. 1126-1134
    • Momani, S.1
  • 17
    • 34848822538 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation by the method of separating variables
    • J. Chen, F. Liu, and V. Anh Analytical solution for the time-fractional telegraph equation by the method of separating variables Journal on Mathematical Analysis and Applications 338 2008 1364 1377
    • (2008) Journal on Mathematical Analysis and Applications , vol.338 , pp. 1364-1377
    • Chen, J.1    Liu, F.2    Anh, V.3
  • 18
    • 0032285655 scopus 로고    scopus 로고
    • Homotopy analysis method: A new analytical method for nonlinear problems
    • S.J. Liao Homotopy analysis method: a new analytical method for nonlinear problems Applied Mathematics and Mechnics 19 1998 957 962
    • (1998) Applied Mathematics and Mechnics , vol.19 , pp. 957-962
    • Liao, S.J.1
  • 19
    • 0141961626 scopus 로고    scopus 로고
    • On the homotopy analysis method for nonlinear problems
    • S.J. Liao On the homotopy analysis method for nonlinear problems Applied Mathematics and Computation 147 2004 499 513
    • (2004) Applied Mathematics and Computation , vol.147 , pp. 499-513
    • Liao, S.J.1
  • 20
    • 34848900880 scopus 로고    scopus 로고
    • A general approach to obtain series solutions of nonlinear differential equations
    • S.J. Liao, and Y. Tan A general approach to obtain series solutions of nonlinear differential equations Studies in Applications of Mathematics 119 2007 297 355
    • (2007) Studies in Applications of Mathematics , vol.119 , pp. 297-355
    • Liao, S.J.1    Tan, Y.2
  • 22
    • 36149036329 scopus 로고
    • Fractional diffusion equation on fractals: One-dimensional case and asymptotic behavior
    • M. Giona, and H.E. Roman Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior Journal of Physics: Mathematical and General 25 1992 2093 2105
    • (1992) Journal of Physics: Mathematical and General , vol.25 , pp. 2093-2105
    • Giona, M.1    Roman, H.E.2
  • 23
    • 67651006181 scopus 로고    scopus 로고
    • A note on fractional diffusion equations
    • S. Das A note on fractional diffusion equations Chaos, Solitons and Fractals 42 2009 2074 2079
    • (2009) Chaos, Solitons and Fractals , vol.42 , pp. 2074-2079
    • Das, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.