메뉴 건너뛰기




Volumn 8, Issue 3, 2013, Pages 175-186

Additive manufacturing techniques for scaffold-based cartilage tissue engineering: A review on various additive manufacturing technologies in generating scaffolds for cartilage tissue engineering

Author keywords

bioengineering; biomanufacturing; biomaterials

Indexed keywords

ADDITIVE MANUFACTURING; ADDITIVE MANUFACTURING TECHNOLOGY; ARTICULAR CARTILAGES; BIO-MANUFACTURING; BIOLOGICAL STRUCTURES; CARTILAGE REGENERATION; CARTILAGE TISSUE ENGINEERING; ENGINEERED STRUCTURES;

EID: 84887088564     PISSN: 17452759     EISSN: 17452767     Source Type: Journal    
DOI: 10.1080/17452759.2013.838825     Document Type: Article
Times cited : (37)

References (53)
  • 1
    • 75149183094 scopus 로고    scopus 로고
    • Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds
    • Arcaute, K., Mann, B., and Wicker, R., 2010. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia, 6, 1047-1054. doi:10.1016/j.actbio.2009.08.017
    • (2010) Acta Biomaterialia , vol.6 , pp. 1047-1054
    • Arcaute, K.1    Mann, B.2    Wicker, R.3
  • 2
    • 84865683188 scopus 로고    scopus 로고
    • Biomedical production of implants by additive electro-chemical and physical processes
    • Bártolo, P., et al., 2012. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals-Manufacturing Technology, 61, 635-655. doi:10.1016/j.cirp.2012.05.005
    • (2012) CIRP Annals-Manufacturing Technology , vol.61 , pp. 635-655
    • Bártolo, P.1
  • 3
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland, T., et al., 2006. Application of inkjet printing to tissue engineering. Journal of Biotechnology, 1, 910-917. doi:10.1002/biot.200600081
    • (2006) Journal of Biotechnology , vol.1 , pp. 910-917
    • Boland, T.1
  • 4
    • 0042827798 scopus 로고    scopus 로고
    • Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
    • ABS ONLY
    • Cao, T., Ho, K-H., and Teoh, S-H., 2003. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Engineering, 9 (suppl. 1), 103-112. ABS ONLY. 10.1089/10763270360697012
    • (2003) Tissue Engineering , vol.9 , Issue.SUPPL. 1 , pp. 103-112
    • Cao, T.1    Ho, K.-H.2    Teoh, S.-H.3
  • 5
    • 84864532793 scopus 로고    scopus 로고
    • Recent progress in interfacial tissue engineering approaches for osteochondral defects
    • Castro, N.J., Hacking, S.A., and Zhang, L.G., 2012. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Annals of Biomedical Engineering, 40 (8), 1628-1640. doi:10.1007/s10439-012-0605-5
    • (2012) Annals of Biomedical Engineering , vol.40 , Issue.8 , pp. 1628-1640
    • Castro, N.J.1    Hacking, S.A.2    Zhang, L.G.3
  • 6
    • 79956126266 scopus 로고    scopus 로고
    • A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering
    • Censi, R., et al., 2011. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Advanced Functional Materials, 21, 1833-1842. doi:10.1002/adfm.201002428
    • (2011) Advanced Functional Materials , vol.21 , pp. 1833-1842
    • Censi, R.1
  • 7
    • 77954990738 scopus 로고    scopus 로고
    • Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation
    • Chan, V., et al., 2010. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab on a Chip, 10, 2062-2070. doi:10.1039/c004285d
    • (2010) Lab on a Chip , vol.10 , pp. 2062-2070
    • Chan, V.1
  • 8
    • 84862923992 scopus 로고    scopus 로고
    • Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering
    • Chen, C-H., Chen, J-P., and Lee, M-Y., 2011. Effects of gelatin modification on rapid prototyping PCL scaffolds for cartilage engineering. Journal of Mechanics in Medicine and Biology, 11 (5), 993-1002. doi:10.1142/S0219519411004848
    • (2011) Journal of Mechanics in Medicine and Biology , vol.11 , Issue.5 , pp. 993-1002
    • Chen, C.-H.1    Chen, J.-P.2    Lee, M.-Y.3
  • 9
    • 84861344807 scopus 로고    scopus 로고
    • A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: In vitro and in vivo studies
    • Christensen, B.B., et al., 2012. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: In vitro and in vivo studies. Knee Surgery, Sports Traumatology, Arthroscopy, 20, 1192-1204. doi:10.1007/s00167-011-1692-9
    • (2012) Knee Surgery, Sports Traumatology, Arthroscopy , vol.20 , pp. 1192-1204
    • Christensen, B.B.1
  • 10
    • 8544236267 scopus 로고    scopus 로고
    • Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects
    • Chua, C.K., et al., 2004. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. Journal of Materials Science: Materials in Medicine, 15 (19), 1113-1121. doi:10.1023/B:JMSM.0000046393.81449.a5
    • (2004) Journal of Materials Science: Materials in Medicine , vol.15 , Issue.19 , pp. 1113-1121
    • Chua, C.K.1
  • 11
    • 83755207611 scopus 로고    scopus 로고
    • Selective laser sintering of functionally graded tissue scaffolds
    • Chua, C.K., et al., 2011. Selective laser sintering of functionally graded tissue scaffolds. Materials Research Society, 36, 1006-1014. doi:10.1557/mrs.2011.271
    • (2011) Materials Research Society , vol.36 , pp. 1006-1014
    • Chua, C.K.1
  • 12
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • Cohen, D.L., et al., 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Engineering, 12 (5), 1325-1335. doi:10.1089/ten.2006.12.1325
    • (2006) Tissue Engineering , vol.12 , Issue.5 , pp. 1325-1335
    • Cohen, D.L.1
  • 13
    • 79952108287 scopus 로고    scopus 로고
    • Additive manufacturing for in situ repair of osteochondral defects
    • Cohen, D.L., et al., 2010. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication, 2.
    • (2010) Biofabrication , pp. 2
    • Cohen, D.L.1
  • 14
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • and (12)
    • Cui, X., et al., 2012. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering: Part A, 18 (11) and (12).
    • (2012) Tissue Engineering: Part A , vol.18 , Issue.11
    • Cui, X.1
  • 15
    • 84879459637 scopus 로고    scopus 로고
    • Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology
    • Ding, C., et al., 2013. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials, 34, 6706-6716. doi:10.1016/j.biomaterials.2013.05.038
    • (2013) Biomaterials , vol.34 , pp. 6706-6716
    • Ding, C.1
  • 16
    • 80053576730 scopus 로고    scopus 로고
    • Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography
    • Elomaa, L., et al., 2011. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomaterialia, 7, 3850-3856. doi:10.1016/j.actbio.2011.06.039
    • (2011) Acta Biomaterialia , vol.7 , pp. 3850-3856
    • Elomaa, L.1
  • 17
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
    • Fedorovich, N.E., et al., 2012. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Engineering Part C: Methods, 18 (1), 33-44. doi:10.1089/ten.tec.2011.0060
    • (2012) Tissue Engineering Part C: Methods , vol.18 , Issue.1 , pp. 33-44
    • Fedorovich, N.E.1
  • 18
    • 82055184089 scopus 로고    scopus 로고
    • Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
    • Hamid, Q., et al., 2011. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication, 3.
    • (2011) Biofabrication , pp. 3
    • Hamid, Q.1
  • 19
    • 84875499421 scopus 로고    scopus 로고
    • The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration
    • Hendriks, J.A.A., et al., 2013. The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials, 34, 4259-4265. doi:10.1016/j.biomaterials.2013.02.060
    • (2013) Biomaterials , vol.34 , pp. 4259-4265
    • Hendriks, J.A.A.1
  • 20
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher, D.W., Sittinger, M., and Risbud, M.V., 2004. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 22 (7), 354-362. doi:10.1016/j.tibtech.2004.05.005
    • (2004) Trends in Biotechnology , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 21
    • 84859430216 scopus 로고    scopus 로고
    • Tissue engineering of functional articular cartilage: The current status
    • Kock, L., van Donkelaar, C.C., and Ito, K., 2012. Tissue engineering of functional articular cartilage: The current status. Cell and Research, 347, 613-627. doi:10.1007/s00441-011-1243-1
    • (2012) Cell and Research , vol.347 , pp. 613-627
    • Kock, L.1    van Donkelaar, C.C.2    Ito, K.3
  • 22
    • 84887091309 scopus 로고    scopus 로고
    • Online Advanced Version
    • Kundu, J., et al., 2013. An additive manufacturing-based PCL-alginate- chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, Online Advanced Version.
    • (2013) Journal of Tissue Engineering and Regenerative Medicine
    • Kundu, J.1
  • 23
    • 34247611917 scopus 로고    scopus 로고
    • 3D scaffold fabrication with PPF/DEF using micro-stereolithography
    • Lee, J.W., et al., 2007. 3D scaffold fabrication with PPF/DEF using micro-stereolithography. Microelectronic Engineering, 84, 1702-1705. doi:10.1016/j.mee.2007.01.267
    • (2007) Microelectronic Engineering , vol.84 , pp. 1702-1705
    • Lee, J.W.1
  • 24
    • 40349086893 scopus 로고    scopus 로고
    • Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds
    • Lee, S.J., et al., 2008. Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomedical Microdevices, 10, 233-241. doi:10.1007/s10544-007-9129-4
    • (2008) Biomedical Microdevices , vol.10 , pp. 233-241
    • Lee, S.J.1
  • 25
    • 78650266036 scopus 로고    scopus 로고
    • A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: Role of modeling on scaffold properties prediction
    • Li, M.G., Tian, X.Y., and Chen, X.B., 2009. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: Role of modeling on scaffold properties prediction. Biofabrication, 1.
    • (2009) Biofabrication , pp. 1
    • Li, M.G.1    Tian, X.Y.2    Chen, X.B.3
  • 26
    • 84868210194 scopus 로고    scopus 로고
    • Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture
    • Lin, H., et al., 2013. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 34, 331-339. doi:10.1016/j.biomaterials.2012.09.048
    • (2013) Biomaterials , vol.34 , pp. 331-339
    • Lin, H.1
  • 27
    • 79951833708 scopus 로고    scopus 로고
    • The research of technique on fabricating hydrogel scaffolds for cartilage tissue engineering based on stereo-lithography
    • Linzhong, Z., et al., 2010. The research of technique on fabricating hydrogel scaffolds for cartilage tissue engineering based on stereo-lithography. 2010 International Conference on Digital Manufacturing & Automation. Changcha, Hunan China.
    • (2010) 2010 International Conference on Digital Manufacturing & Automation
    • Linzhong, Z.1
  • 28
    • 84862648665 scopus 로고    scopus 로고
    • Additive manufacturing of tissues and organs
    • Melchels, F.P.W., et al., 2012. Additive manufacturing of tissues and organs. Progress in Polymer Science, 37, 1079-1104. doi:10.1016/j.progpolymsci.2011.11.007
    • (2012) Progress in Polymer Science , vol.37 , pp. 1079-1104
    • Melchels, F.P.W.1
  • 29
    • 67349157548 scopus 로고    scopus 로고
    • A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography
    • Melchels, F.P.W., Feijen, J., and Grijpma, D.W., 2009. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 30, 3801-3809. doi:10.1016/j.biomaterials.2009.03.055
    • (2009) Biomaterials , vol.30 , pp. 3801-3809
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 30
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • Melchels, F.P.W., Feijen, J., and Grijpma, D.W., 2010. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31, 6121-6130. doi:10.1016/j.biomaterials.2010.04.050
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.W.1    Feijen, J.2    Grijpma, D.W.3
  • 31
    • 84887103216 scopus 로고    scopus 로고
    • Fabrication of osteochondral scaffolds with stereolithography
    • 14th Annual Meeting of the Netherlands Society for Biomaterials and Tissue Engineering
    • Melchels, F.P.W., Grijpma, D.W., and Feijen, J., 2005. Fabrication of osteochondral scaffolds with stereolithography. In: 14th Annual Meeting of the Netherlands Society for Biomaterials and Tissue Engineering. Lunteren, Netherlands.
    • (2005)
    • Melchels, F.P.W.1    Grijpma, D.W.2    Feijen, J.3
  • 32
    • 77957562650 scopus 로고    scopus 로고
    • Biofabrication: A 21st century manufacturing paradigm
    • Mironov, V., et al., 2009. Biofabrication: A 21st century manufacturing paradigm. Biofabrication, 1.
    • (2009) Biofabrication , pp. 1
    • Mironov, V.1
  • 33
    • 33748316443 scopus 로고    scopus 로고
    • Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness
    • Moroni, L., et al., 2006. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials, 27, 5918-5926. doi:10.1016/j.biomaterials.2006.08.015
    • (2006) Biomaterials , vol.27 , pp. 5918-5926
    • Moroni, L.1
  • 34
    • 38449087800 scopus 로고    scopus 로고
    • 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • Moroni, L., et al., 2008. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Advanced Functional Materials, 18 (1), 53-60. doi:10.1002/adfm.200601158
    • (2008) Advanced Functional Materials , vol.18 , Issue.1 , pp. 53-60
    • Moroni, L.1
  • 35
    • 0344944005 scopus 로고    scopus 로고
    • Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography
    • Naumann, A., et al., 2003. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography. European Archives of Otorhinolaryngology, 260, 568-575.
    • (2003) European Archives of Otorhinolaryngology , vol.260 , pp. 568-575
    • Naumann, A.1
  • 36
    • 84879418183 scopus 로고    scopus 로고
    • Osteochondral tissue engineering: Current strategies and challenges
    • Nukavarapu, S.P. and Dorcemus, D.L., 2013. Osteochondral tissue engineering: Current strategies and challenges. Biotechnology Advances, 31, 706-721. doi:10.1016/j.biotechadv.2012.11.004
    • (2013) Biotechnology Advances , vol.31 , pp. 706-721
    • Nukavarapu, S.P.1    Dorcemus, D.L.2
  • 38
    • 82055196987 scopus 로고    scopus 로고
    • Bioprinting of hybrid tissue constructs with tailorable mechanical properties
    • Schuurman, W., et al., 2011. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3.
    • (2011) Biofabrication , pp. 3
    • Schuurman, W.1
  • 39
    • 84876688374 scopus 로고    scopus 로고
    • Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics
    • Online Advanced Version
    • Schuurman, W., et al., 2013. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. Journal of Tissue Engineering and Regenerative Medicine, Online Advanced Version.
    • (2013) Journal of Tissue Engineering and Regenerative Medicine
    • Schuurman, W.1
  • 40
    • 78649529363 scopus 로고    scopus 로고
    • Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins
    • Seck, T.M., et al., 2010. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. Journal of Controlled Release, 148, 34-41. doi:10.1016/j.jconrel.2010.07.111
    • (2010) Journal of Controlled Release , vol.148 , pp. 34-41
    • Seck, T.M.1
  • 41
    • 2942536383 scopus 로고    scopus 로고
    • Engineering structurally organized cartilage and bone tissues
    • Sharma, B. and Elisseff, J., 2004. Engineering structurally organized cartilage and bone tissues. Annals of Biomedical Engineering, 32 (1),148-159. doi:10.1023/B:ABME.0000007799.60142.78
    • (2004) Annals of Biomedical Engineering , vol.32 , Issue.1 , pp. 148-159
    • Sharma, B.1    Elisseff, J.2
  • 42
    • 0036888666 scopus 로고    scopus 로고
    • A three-dimensional osteochondral composite scaffold for articular cartilage repair
    • Sherwood, J.K., et al., 2002. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23, 4739-4751, 10.1016/S0142-9612(02)00223-5
    • (2002) Biomaterials , vol.23 , pp. 4739-4751
    • Sherwood, J.K.1
  • 43
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim, J-H., et al., 2012. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering, 22.
    • (2012) Journal of Micromechanics and Microengineering , pp. 22
    • Shim, J.-H.1
  • 44
    • 70350621347 scopus 로고    scopus 로고
    • Computational biomechanics of articular cartilage of human knee joint: Effect of osteochondral defects
    • Shirazi, R. and Shirazi-Adl, A., 2009. Computational biomechanics of articular cartilage of human knee joint: Effect of osteochondral defects. Journal of Biomechanics, 42, 2458-2465. doi:10.1016/j.jbiomech.2009.07.022
    • (2009) Journal of Biomechanics , vol.42 , pp. 2458-2465
    • Shirazi, R.1    Shirazi-Adl, A.2
  • 45
    • 36248991772 scopus 로고    scopus 로고
    • Repair and regeneration of osteochondral defects in the articular joints
    • Swieszkowski, W., et al., 2007. Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 24, 489-495. doi:10.1016/j.bioeng.2007.07.014
    • (2007) Biomolecular Engineering , vol.24 , pp. 489-495
    • Swieszkowski, W.1
  • 46
    • 79961067722 scopus 로고    scopus 로고
    • Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage
    • Toh, W.S., et al., 2011. Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Molecular Pharmaceutics, 8, 994-1001. doi:10.1021/mp100437a
    • (2011) Molecular Pharmaceutics , vol.8 , pp. 994-1001
    • Toh, W.S.1
  • 47
    • 1642319363 scopus 로고    scopus 로고
    • Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    • Woodfield, T.B.F., et al., 2004. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25, 4149-4161. doi:10.1016/j.biomaterials.2003.10.056
    • (2004) Biomaterials , vol.25 , pp. 4149-4161
    • Woodfield, T.B.F.1
  • 48
    • 27744606356 scopus 로고    scopus 로고
    • Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs
    • ABS ONLY
    • Woodfield, T.B.F., et al., 2005. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Engineering, 11 (9-10), 1297-1311. ABS ONLY 10.1089/ten.2005.11.1297
    • (2005) Tissue Engineering , vol.11 , Issue.9-10 , pp. 1297-1311
    • Woodfield, T.B.F.1
  • 49
    • 67649881468 scopus 로고    scopus 로고
    • Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints
    • Woodfield, T.B.F., et al., 2009. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Proliferation, 42, 485-497. doi:10.1111/j.1365-2184.2009.00608.x
    • (2009) Cell Proliferation , vol.42 , pp. 485-497
    • Woodfield, T.B.F.1
  • 50
    • 85065220413 scopus 로고    scopus 로고
    • Controlled positioning of cells in biomaterials-Approaches towards 3D tissue printing
    • Wüst, S., Müller, R., and Hofmann, S., 2011. Controlled positioning of cells in biomaterials-Approaches towards 3D tissue printing. Journal of Functional Biomaterials, 2, 119-154. doi:10.3390/jfb2030119
    • (2011) Journal of Functional Biomaterials , vol.2 , pp. 119-154
    • Wüst, S.1    Müller, R.2    Hofmann, S.3
  • 51
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu, T., et al., 2013. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5.
    • (2013) Biofabrication , pp. 5
    • Xu, T.1
  • 52
    • 67349179982 scopus 로고    scopus 로고
    • Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen
    • Yen, H-J., et al., 2009a. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomedical Microdevices, 11, 615-624. doi:10.1007/s10544-008-9271-7
    • (2009) Biomedical Microdevices , vol.11 , pp. 615-624
    • Yen, H.-J.1
  • 53
    • 66249135321 scopus 로고    scopus 로고
    • Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering
    • Yen, H-J., et al., 2009b. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Engineering: Part A, 15 (5), 965-975. doi:10.1089/ten.tea.2008.0090
    • (2009) Tissue Engineering: Part A , vol.15 , Issue.5 , pp. 965-975
    • Yen, H.-J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.