메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 1480-1496

Multiple model approach to nonlinear system identification with an uncertain scheduling variable using em algorithm

Author keywords

Expectation maximization algorithm; Kalman smoother; Multiple models; Nonlinear process; Particle smoother; System identification

Indexed keywords

CONTINUOUS STIRRED TANK REACTOR; EXPECTATION - MAXIMIZATIONS; EXPECTATION-MAXIMIZATION ALGORITHMS; KALMAN SMOOTHER; MULTIPLE-MODEL APPROACHES; NONLINEAR PROCESS; PARTICLE SMOOTHERS; SIMULTANEOUS IDENTIFICATION;

EID: 84887078962     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.09.013     Document Type: Article
Times cited : (67)

References (38)
  • 1
    • 0036236141 scopus 로고    scopus 로고
    • Nonlinear system identification
    • DOI 10.1007/BF01211655
    • R.D. Nowak Nonlinear system identification Circuits, Systems, and Signal Processing 21 1 2002 109 122 (Pubitemid 34414650)
    • (2002) Circuits, Systems, and Signal Processing , vol.21 , Issue.1 , pp. 109-122
    • Nowak, R.D.1
  • 3
    • 0036236957 scopus 로고    scopus 로고
    • Prediction error estimation methods
    • DOI 10.1007/BF01211648
    • L. Ljung Prediction error estimation methods Circuits Systems Signal Processing 21 1 2002 11 21 (Pubitemid 34414643)
    • (2002) Circuits, Systems, and Signal Processing , vol.21 , Issue.1 , pp. 11-21
    • Ljung, L.1
  • 5
    • 0036714154 scopus 로고    scopus 로고
    • A nonparametric Bayesian modeling approach for cytogenetic dosimetry
    • A. Kottas, M.D. Branco, and A.E. Gelfand A nonparametric Bayesian modeling approach for cytogenetic dosimetry Biometrics 58 3 2002 593 600 (Pubitemid 35001477)
    • (2002) Biometrics , vol.58 , Issue.3 , pp. 593-600
    • Kottas, A.1    Branco, M.D.2    Gelfand, A.E.3
  • 6
    • 77950299927 scopus 로고    scopus 로고
    • A methodology for modeling batch reactors using generalized dynamic neural networks
    • M.N. Kashani, and S. Shahhosseini A methodology for modeling batch reactors using generalized dynamic neural networks Chemical Engineering Journal 159 1-3 2010 195 202
    • (2010) Chemical Engineering Journal , vol.159 , Issue.13 , pp. 195-202
    • Kashani, M.N.1    Shahhosseini, S.2
  • 7
    • 79451472833 scopus 로고    scopus 로고
    • Bayesian migration of Gaussian process regression for rapid process modeling and optimization
    • W. Yan, S. Hu, Y. Yang, F. Gao, and T. Chen Bayesian migration of Gaussian process regression for rapid process modeling and optimization Chemical Engineering Journal 166 3 2011 1095 1103
    • (2011) Chemical Engineering Journal , vol.166 , Issue.3 , pp. 1095-1103
    • Yan, W.1    Hu, S.2    Yang, Y.3    Gao, F.4    Chen, T.5
  • 11
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Statistics and Computing 14 3 2004 199 222 (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 12
    • 75149167375 scopus 로고    scopus 로고
    • Nonlinear system identification under missing observations: The case of unknown model structure
    • R.B. Gopaluni Nonlinear system identification under missing observations: the case of unknown model structure Journal of Process Control 20 3 2010 314 324
    • (2010) Journal of Process Control , vol.20 , Issue.3 , pp. 314-324
    • Gopaluni, R.B.1
  • 14
    • 0031144409 scopus 로고    scopus 로고
    • Estimation of Nonlinear Systems Using Linear Multiple Models
    • A. Banerjee, Y. Arkun, B. Ogunnaike, and R. Pearson Estimation of nonlinear systems using linear multiple AIChE Journal 43 5 1997 1204 1226 (Pubitemid 127481052)
    • (1997) AIChE Journal , vol.43 , Issue.5 , pp. 1204-1226
    • Banerjee, A.1    Arkun, Y.2    Ogunnaike, B.3    Pearson, R.4
  • 15
    • 78751575535 scopus 로고    scopus 로고
    • Multiple model LPV approach to nonlinear process identification with em algorithm
    • X. Jin, B. Huang, and D.S. Shook Multiple model LPV approach to nonlinear process identification with EM algorithm Journal of Process Control 21 1 2011 182 193
    • (2011) Journal of Process Control , vol.21 , Issue.1 , pp. 182-193
    • Jin, X.1    Huang, B.2    Shook, D.S.3
  • 16
    • 79961018058 scopus 로고    scopus 로고
    • A method of LPV model identification for control
    • Seoul, Korea, July 6-11
    • Y. Zhu, and Z. Xu A method of LPV model identification for control 17th IFAC World Congress Seoul, Korea, July 6-11 2008 5018 5023
    • (2008) 17th IFAC World Congress , pp. 5018-5023
    • Zhu, Y.1    Xu, Z.2
  • 17
    • 84655162775 scopus 로고    scopus 로고
    • Prediction error method for identification of LPV models
    • Y. Zhao, B. Huang, H. Su, and J. Chu Prediction error method for identification of LPV models Journal of Process Control 22 1 2012 180 193
    • (2012) Journal of Process Control , vol.22 , Issue.1 , pp. 180-193
    • Zhao, Y.1    Huang, B.2    Su, H.3    Chu, J.4
  • 21
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • J. Wu On the convergence properties of the EM algorithm The Annals of Statistics 11 1 1983 95 103
    • (1983) The Annals of Statistics , vol.11 , Issue.1 , pp. 95-103
    • Wu, J.1
  • 22
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Statistics and Computing 10 3 2000 197 208
    • (2000) Statistics and Computing , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 23
    • 84857077730 scopus 로고    scopus 로고
    • Smoothing problems in a Bayesian framework and their linear Gaussian solutions
    • E. Cosme, J. Verron, P. Brasseur, J. Blum, and D. Auroux Smoothing problems in a Bayesian framework and their linear Gaussian solutions Monthly Weather Review 140 2 2012 683 695
    • (2012) Monthly Weather Review , vol.140 , Issue.2 , pp. 683-695
    • Cosme, E.1    Verron, J.2    Brasseur, P.3    Blum, J.4    Auroux, D.5
  • 28
    • 57349142962 scopus 로고    scopus 로고
    • System identification using slow and irregular output samples
    • Y. Zhu, H. Telkamp, J. Wang, and Q. Fu System identification using slow and irregular output samples Journal of Process Control 19 1 2009 58 67
    • (2009) Journal of Process Control , vol.19 , Issue.1 , pp. 58-67
    • Zhu, Y.1    Telkamp, H.2    Wang, J.3    Fu, Q.4
  • 29
    • 84864325262 scopus 로고    scopus 로고
    • Identification of multi-model LPV models with two scheduling variables
    • J. Huang, G. Ji, Y. Zhu, and P. Van den Bosch Identification of multi-model LPV models with two scheduling variables Journal of Process Control 22 7 2012 1198 1208
    • (2012) Journal of Process Control , vol.22 , Issue.7 , pp. 1198-1208
    • Huang, J.1    Ji, G.2    Zhu, Y.3    Van Den Bosch, P.4
  • 30
    • 0031228960 scopus 로고    scopus 로고
    • Dynamics and control of distillation columns - A tutorial introduction
    • S. Skogestad Dynamics and control of distillation columns - a tutorial introduction Chemical Engineering Research and Design 75 1997 539 562
    • (1997) Chemical Engineering Research and Design , vol.75 , pp. 539-562
    • Skogestad, S.1
  • 32
    • 10944228649 scopus 로고    scopus 로고
    • Time series prediction by Kalman smoother with cross-validated noise density
    • 2004 IEEE International Joint Conference on Neural Networks - Proceedings
    • S. Särkkä, A. Vehtari, and J. Lampinen Time series prediction by Kalman smoother with cross-validated noise density Proceedings of the IEEE International Joint Conference on Neural Networks Budapest 2004 1653 1657 (Pubitemid 40011706)
    • (2004) IEEE International Conference on Neural Networks - Conference Proceedings , vol.2 , pp. 1653-1657
    • Sarkka, S.1    Vehtari, A.2    Lampinen, J.3
  • 34
    • 32144464405 scopus 로고    scopus 로고
    • Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm
    • DOI 10.1088/0967-3334/27/3/002, PII S0967333406088502
    • M.P. Tarvainen, S.D. Georgiadis, P.O. Ranta-Aho, and P.a. Karjalainen Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm Physiological Measurement 27 3 2006 225 239 (Pubitemid 43208587)
    • (2006) Physiological Measurement , vol.27 , Issue.3 , pp. 225-239
    • Tarvainen, M.P.1    Georgiadis, S.D.2    Ranta-Aho, P.O.3    Karjalainen, P.A.4
  • 35
    • 48049096270 scopus 로고    scopus 로고
    • Maximum likelihood parameter estimation in general state-space models using particle methods
    • USA
    • G. Poyiadjis, A. Doucet, and S.S. Singh Maximum likelihood parameter estimation in general state-space models using particle methods Proceedings of Joint Statistical Meeting USA 2005
    • (2005) Proceedings of Joint Statistical Meeting
    • Poyiadjis, G.1    Doucet, A.2    Singh, S.S.3
  • 37
    • 59349110051 scopus 로고    scopus 로고
    • A particle filter approach to identification of nonlinear processes under missing observations
    • R.B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations The Canadian Journal of Chemical Engineering 86 6 2008 1081 1092
    • (2008) The Canadian Journal of Chemical Engineering , vol.86 , Issue.6 , pp. 1081-1092
    • Gopaluni, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.