-
1
-
-
0036236141
-
Nonlinear system identification
-
DOI 10.1007/BF01211655
-
R.D. Nowak Nonlinear system identification Circuits, Systems, and Signal Processing 21 1 2002 109 122 (Pubitemid 34414650)
-
(2002)
Circuits, Systems, and Signal Processing
, vol.21
, Issue.1
, pp. 109-122
-
-
Nowak, R.D.1
-
2
-
-
47749106824
-
Model selection approaches for non-linear system identification: A review
-
X. Hong, R.J. Mitchell, S. Chen, C.J. Harris, K. Li, and G.W. Irwin Model selection approaches for non-linear system identification: a review International Journal of Systems Science 39 10 2008 925 946
-
(2008)
International Journal of Systems Science
, vol.39
, Issue.10
, pp. 925-946
-
-
Hong, X.1
Mitchell, R.J.2
Chen, S.3
Harris, C.J.4
Li, K.5
Irwin, G.W.6
-
3
-
-
0036236957
-
Prediction error estimation methods
-
DOI 10.1007/BF01211648
-
L. Ljung Prediction error estimation methods Circuits Systems Signal Processing 21 1 2002 11 21 (Pubitemid 34414643)
-
(2002)
Circuits, Systems, and Signal Processing
, vol.21
, Issue.1
, pp. 11-21
-
-
Ljung, L.1
-
5
-
-
0036714154
-
A nonparametric Bayesian modeling approach for cytogenetic dosimetry
-
A. Kottas, M.D. Branco, and A.E. Gelfand A nonparametric Bayesian modeling approach for cytogenetic dosimetry Biometrics 58 3 2002 593 600 (Pubitemid 35001477)
-
(2002)
Biometrics
, vol.58
, Issue.3
, pp. 593-600
-
-
Kottas, A.1
Branco, M.D.2
Gelfand, A.E.3
-
6
-
-
77950299927
-
A methodology for modeling batch reactors using generalized dynamic neural networks
-
M.N. Kashani, and S. Shahhosseini A methodology for modeling batch reactors using generalized dynamic neural networks Chemical Engineering Journal 159 1-3 2010 195 202
-
(2010)
Chemical Engineering Journal
, vol.159
, Issue.13
, pp. 195-202
-
-
Kashani, M.N.1
Shahhosseini, S.2
-
7
-
-
79451472833
-
Bayesian migration of Gaussian process regression for rapid process modeling and optimization
-
W. Yan, S. Hu, Y. Yang, F. Gao, and T. Chen Bayesian migration of Gaussian process regression for rapid process modeling and optimization Chemical Engineering Journal 166 3 2011 1095 1103
-
(2011)
Chemical Engineering Journal
, vol.166
, Issue.3
, pp. 1095-1103
-
-
Yan, W.1
Hu, S.2
Yang, Y.3
Gao, F.4
Chen, T.5
-
11
-
-
4043137356
-
A tutorial on support vector regression
-
DOI 10.1023/B:STCO.0000035301.49549.88
-
A.J. Smola, and B. Schölkopf A tutorial on support vector regression Statistics and Computing 14 3 2004 199 222 (Pubitemid 39063488)
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
12
-
-
75149167375
-
Nonlinear system identification under missing observations: The case of unknown model structure
-
R.B. Gopaluni Nonlinear system identification under missing observations: the case of unknown model structure Journal of Process Control 20 3 2010 314 324
-
(2010)
Journal of Process Control
, vol.20
, Issue.3
, pp. 314-324
-
-
Gopaluni, R.B.1
-
14
-
-
0031144409
-
Estimation of Nonlinear Systems Using Linear Multiple Models
-
A. Banerjee, Y. Arkun, B. Ogunnaike, and R. Pearson Estimation of nonlinear systems using linear multiple AIChE Journal 43 5 1997 1204 1226 (Pubitemid 127481052)
-
(1997)
AIChE Journal
, vol.43
, Issue.5
, pp. 1204-1226
-
-
Banerjee, A.1
Arkun, Y.2
Ogunnaike, B.3
Pearson, R.4
-
15
-
-
78751575535
-
Multiple model LPV approach to nonlinear process identification with em algorithm
-
X. Jin, B. Huang, and D.S. Shook Multiple model LPV approach to nonlinear process identification with EM algorithm Journal of Process Control 21 1 2011 182 193
-
(2011)
Journal of Process Control
, vol.21
, Issue.1
, pp. 182-193
-
-
Jin, X.1
Huang, B.2
Shook, D.S.3
-
16
-
-
79961018058
-
A method of LPV model identification for control
-
Seoul, Korea, July 6-11
-
Y. Zhu, and Z. Xu A method of LPV model identification for control 17th IFAC World Congress Seoul, Korea, July 6-11 2008 5018 5023
-
(2008)
17th IFAC World Congress
, pp. 5018-5023
-
-
Zhu, Y.1
Xu, Z.2
-
17
-
-
84655162775
-
Prediction error method for identification of LPV models
-
Y. Zhao, B. Huang, H. Su, and J. Chu Prediction error method for identification of LPV models Journal of Process Control 22 1 2012 180 193
-
(2012)
Journal of Process Control
, vol.22
, Issue.1
, pp. 180-193
-
-
Zhao, Y.1
Huang, B.2
Su, H.3
Chu, J.4
-
19
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm Journal of the Royal Statistical Society, Series B 39 1 1977 1 38
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
20
-
-
84948109721
-
-
John Wiley & Sons, Inc. Hoboken, NJ, USA
-
G.J. McLachlan, and T. Krishnan The EM Algorithm and Extensions, 2E 2008 John Wiley & Sons, Inc. Hoboken, NJ, USA
-
(2008)
The em Algorithm and Extensions, 2E
-
-
McLachlan, G.J.1
Krishnan, T.2
-
21
-
-
0002210265
-
On the convergence properties of the em algorithm
-
J. Wu On the convergence properties of the EM algorithm The Annals of Statistics 11 1 1983 95 103
-
(1983)
The Annals of Statistics
, vol.11
, Issue.1
, pp. 95-103
-
-
Wu, J.1
-
22
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Statistics and Computing 10 3 2000 197 208
-
(2000)
Statistics and Computing
, vol.10
, Issue.3
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.2
Andrieu, C.3
-
23
-
-
84857077730
-
Smoothing problems in a Bayesian framework and their linear Gaussian solutions
-
E. Cosme, J. Verron, P. Brasseur, J. Blum, and D. Auroux Smoothing problems in a Bayesian framework and their linear Gaussian solutions Monthly Weather Review 140 2 2012 683 695
-
(2012)
Monthly Weather Review
, vol.140
, Issue.2
, pp. 683-695
-
-
Cosme, E.1
Verron, J.2
Brasseur, P.3
Blum, J.4
Auroux, D.5
-
27
-
-
64749104394
-
Nonlinear MPC using an identified LPV model
-
Z. Xu, J. Zhao, J. Qian, and Y. Zhu Nonlinear MPC using an identified LPV model Industrial and Engineering Chemistry Research 48 6 2009 3043 3051
-
(2009)
Industrial and Engineering Chemistry Research
, vol.48
, Issue.6
, pp. 3043-3051
-
-
Xu, Z.1
Zhao, J.2
Qian, J.3
Zhu, Y.4
-
28
-
-
57349142962
-
System identification using slow and irregular output samples
-
Y. Zhu, H. Telkamp, J. Wang, and Q. Fu System identification using slow and irregular output samples Journal of Process Control 19 1 2009 58 67
-
(2009)
Journal of Process Control
, vol.19
, Issue.1
, pp. 58-67
-
-
Zhu, Y.1
Telkamp, H.2
Wang, J.3
Fu, Q.4
-
29
-
-
84864325262
-
Identification of multi-model LPV models with two scheduling variables
-
J. Huang, G. Ji, Y. Zhu, and P. Van den Bosch Identification of multi-model LPV models with two scheduling variables Journal of Process Control 22 7 2012 1198 1208
-
(2012)
Journal of Process Control
, vol.22
, Issue.7
, pp. 1198-1208
-
-
Huang, J.1
Ji, G.2
Zhu, Y.3
Van Den Bosch, P.4
-
30
-
-
0031228960
-
Dynamics and control of distillation columns - A tutorial introduction
-
S. Skogestad Dynamics and control of distillation columns - a tutorial introduction Chemical Engineering Research and Design 75 1997 539 562
-
(1997)
Chemical Engineering Research and Design
, vol.75
, pp. 539-562
-
-
Skogestad, S.1
-
34
-
-
32144464405
-
Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm
-
DOI 10.1088/0967-3334/27/3/002, PII S0967333406088502
-
M.P. Tarvainen, S.D. Georgiadis, P.O. Ranta-Aho, and P.a. Karjalainen Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm Physiological Measurement 27 3 2006 225 239 (Pubitemid 43208587)
-
(2006)
Physiological Measurement
, vol.27
, Issue.3
, pp. 225-239
-
-
Tarvainen, M.P.1
Georgiadis, S.D.2
Ranta-Aho, P.O.3
Karjalainen, P.A.4
-
36
-
-
33749264449
-
Fast particle smoothing: If i had a million particles
-
Pittsburgh
-
M. Klaas, M. Briers, N. Freitas, A. de Doucet, S. Maskell, and D. Lang Fast particle smoothing: if I had a million particles Proceedings of the 23rd International Conference on Machine Learning Pittsburgh 2006
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
-
-
Klaas, M.1
Briers, M.2
Freitas, N.3
De Doucet, A.4
Maskell, S.5
Lang, D.6
-
37
-
-
59349110051
-
A particle filter approach to identification of nonlinear processes under missing observations
-
R.B. Gopaluni A particle filter approach to identification of nonlinear processes under missing observations The Canadian Journal of Chemical Engineering 86 6 2008 1081 1092
-
(2008)
The Canadian Journal of Chemical Engineering
, vol.86
, Issue.6
, pp. 1081-1092
-
-
Gopaluni, R.B.1
|