메뉴 건너뛰기




Volumn 102, Issue 4, 2013, Pages 237-242

PPIevo: Protein-protein interaction prediction from PSSM based evolutionary information

Author keywords

Computational intelligence; Machine learning; Position specific scoring matrix; Protein interaction networks; Protein protein interaction map

Indexed keywords

ACCURACY; AMINO ACID SEQUENCE; AREA UNDER THE CURVE; ARTICLE; CALCULATION; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; EVOLUTIONARY ALGORITHM; LEARNING ALGORITHM; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; POSITION WEIGHT MATRIX; PRIORITY JOURNAL; PROTEIN PROTEIN INTERACTION; RECEIVER OPERATING CHARACTERISTIC; SEQUENCE ANALYSIS; VALIDATION PROCESS;

EID: 84886313848     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2013.05.006     Document Type: Article
Times cited : (138)

References (50)
  • 2
    • 65549157572 scopus 로고    scopus 로고
    • A survey of available tools and web servers for analysis of protein-protein interactions and interfaces
    • Tuncbag N., Kar G., Keskin O., Gursoy A., Nussinov R. A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief. Bioinform. 2009, 10:217-232.
    • (2009) Brief. Bioinform. , vol.10 , pp. 217-232
    • Tuncbag, N.1    Kar, G.2    Keskin, O.3    Gursoy, A.4    Nussinov, R.5
  • 3
    • 34247586171 scopus 로고    scopus 로고
    • Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners
    • Shoemaker B., Panchenko A. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 2007, 3:595-601.
    • (2007) PLoS Comput. Biol. , vol.3 , pp. 595-601
    • Shoemaker, B.1    Panchenko, A.2
  • 4
    • 16344384583 scopus 로고    scopus 로고
    • Effect of training datasets on support vector machine prediction of protein-protein interactions
    • Lo S.L., Cai C.Z., Chen Y.Z., Chung M.C. Effect of training datasets on support vector machine prediction of protein-protein interactions. Proteomics 2005, 5:876-884.
    • (2005) Proteomics , vol.5 , pp. 876-884
    • Lo, S.L.1    Cai, C.Z.2    Chen, Y.Z.3    Chung, M.C.4
  • 7
    • 22244447463 scopus 로고    scopus 로고
    • Assessing the limits of genomic data integration for predicting protein networks
    • Lu L.J., Xia Y., Paccanaro A., Yu H., Gerstein M. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 2005, 15:945-953.
    • (2005) Genome Res. , vol.15 , pp. 945-953
    • Lu, L.J.1    Xia, Y.2    Paccanaro, A.3    Yu, H.4    Gerstein, M.5
  • 8
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • Chen X.W., Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 2005, 21:4394-4400.
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.W.1    Liu, M.2
  • 10
    • 29144461552 scopus 로고    scopus 로고
    • Predicting protein-protein interaction by searching evolutionary tree automorphism space
    • Jothi R., Kann M.G., Przytycka T.M. Predicting protein-protein interaction by searching evolutionary tree automorphism space. Bioinformatics 2005, 21(Suppl. 1):i241-i250.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Jothi, R.1    Kann, M.G.2    Przytycka, T.M.3
  • 11
    • 0033523989 scopus 로고    scopus 로고
    • Protein interaction maps for complete genomes based on gene fusion events
    • Enright A., Iliopoulos I., Kyrpides N., Ouzounis C. Protein interaction maps for complete genomes based on gene fusion events. Nature 1999, 402:86-90.
    • (1999) Nature , vol.402 , pp. 86-90
    • Enright, A.1    Iliopoulos, I.2    Kyrpides, N.3    Ouzounis, C.4
  • 12
  • 15
    • 48249125808 scopus 로고    scopus 로고
    • Integrating protein-protein interactions and text mining for protein function prediction
    • Jaeger S., Gaudan S., Leser U., Rebholz-Schuhmann D. Integrating protein-protein interactions and text mining for protein function prediction. BMC Bioinforma. 2008, 9(Suppl. 8):S2.
    • (2008) BMC Bioinforma. , vol.9 , Issue.SUPPL. 8
    • Jaeger, S.1    Gaudan, S.2    Leser, U.3    Rebholz-Schuhmann, D.4
  • 16
    • 77957821742 scopus 로고    scopus 로고
    • Simple sequence-based kernels do not predict protein-protein interactions
    • Yu J., Guo M., Needham C., Huang Y., Cai L., Westhead D. Simple sequence-based kernels do not predict protein-protein interactions. Bioinformatics 2010, 26:2610-2614.
    • (2010) Bioinformatics , vol.26 , pp. 2610-2614
    • Yu, J.1    Guo, M.2    Needham, C.3    Huang, Y.4    Cai, L.5    Westhead, D.6
  • 18
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur A., Noble W. Kernel methods for predicting protein-protein interactions. Bioinformatics 2005, 21:i38-i46.
    • (2005) Bioinformatics , vol.21
    • Ben-Hur, A.1    Noble, W.2
  • 19
    • 50249181311 scopus 로고    scopus 로고
    • Protein-protein interaction detection based on substring sensitivity measure
    • Zaki N., Deris S., Alashwal H. Protein-protein interaction detection based on substring sensitivity measure. Int. J. Biol. Med. Sci. 2006, 1.
    • (2006) Int. J. Biol. Med. Sci. , vol.1
    • Zaki, N.1    Deris, S.2    Alashwal, H.3
  • 20
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • Zhang L.V., Wong S.L., King O.D., Roth F.P. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinforma. 2004, 5:38.
    • (2004) BMC Bioinforma. , vol.5 , pp. 38
    • Zhang, L.V.1    Wong, S.L.2    King, O.D.3    Roth, F.P.4
  • 21
    • 4544222482 scopus 로고    scopus 로고
    • A domain combination based probabilistic framework for protein-protein interaction prediction
    • Han D., Kim H.S., Seo J., Jang W. A domain combination based probabilistic framework for protein-protein interaction prediction. Genome Inform. Ser. 2003, 250-260.
    • (2003) Genome Inform. Ser. , pp. 250-260
    • Han, D.1    Kim, H.S.2    Seo, J.3    Jang, W.4
  • 22
    • 79958028560 scopus 로고    scopus 로고
    • Adaptive compressive learning for prediction of protein-protein interactions from primary sequence
    • Zhang Y.N., Pan X.Y., Huang Y., Shen H.B. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence. J. Theor. Biol. 2011, 283:44-52.
    • (2011) J. Theor. Biol. , vol.283 , pp. 44-52
    • Zhang, Y.N.1    Pan, X.Y.2    Huang, Y.3    Shen, H.B.4
  • 24
    • 15944418607 scopus 로고    scopus 로고
    • Random forest similarity for protein-protein interaction prediction from multiple sources
    • Qi Y., Klein-Seetharaman J., Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pac. Symp. Biocomput. 2005, 531-542.
    • (2005) Pac. Symp. Biocomput. , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 25
    • 62649162748 scopus 로고    scopus 로고
    • Uncovering the rules for protein-protein interactions from yeast genomic data
    • Wang J., Li C., Wang E., Wang X. Uncovering the rules for protein-protein interactions from yeast genomic data. Proc. Natl. Acad. Sci. 2009, 106:3752-3757.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 3752-3757
    • Wang, J.1    Li, C.2    Wang, E.3    Wang, X.4
  • 28
    • 22244447463 scopus 로고    scopus 로고
    • Assessing the limits of genomic data integration for predicting protein networks
    • Lu L.J., Xia Y., Paccanaro A., Yu H., Gerstein M. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 2005, 15:945-953.
    • (2005) Genome Res. , vol.15 , pp. 945-953
    • Lu, L.J.1    Xia, Y.2    Paccanaro, A.3    Yu, H.4    Gerstein, M.5
  • 30
    • 84862221167 scopus 로고    scopus 로고
    • SMART 7: recent updates to the protein domain annotation resource
    • Letunic I., Doerks T., Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40:D302-D305.
    • (2012) Nucleic Acids Res. , vol.40
    • Letunic, I.1    Doerks, T.2    Bork, P.3
  • 32
    • 78651329116 scopus 로고    scopus 로고
    • KUPS: constructing datasets of interacting and non-interacting protein pairs with associated attributions
    • Chen X.W., Jeong J.C., Dermyer P. KUPS: constructing datasets of interacting and non-interacting protein pairs with associated attributions. Nucleic Acids Res. 2011, 39:D750-D754.
    • (2011) Nucleic Acids Res. , vol.39
    • Chen, X.W.1    Jeong, J.C.2    Dermyer, P.3
  • 33
    • 33947328242 scopus 로고    scopus 로고
    • Choosing negative examples for the prediction of protein-protein interactions
    • Ben-Hur A., Noble W.S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinforma. 2006, 7:S2.
    • (2006) BMC Bioinforma. , vol.7
    • Ben-Hur, A.1    Noble, W.S.2
  • 35
    • 61349136339 scopus 로고    scopus 로고
    • GRIP: a web-based system for constructing Gold Standard datasets for protein-protein interaction prediction
    • Browne F., Wang H., Zheng H., Azuaje F. GRIP: a web-based system for constructing Gold Standard datasets for protein-protein interaction prediction. Source Code Biol. Med. 2009, 4:2.
    • (2009) Source Code Biol. Med. , vol.4 , pp. 2
    • Browne, F.1    Wang, H.2    Zheng, H.3    Azuaje, F.4
  • 36
    • 84870311707 scopus 로고    scopus 로고
    • Proteome-wide prediction of protein-protein interactions from high-throughput data
    • Liu Z.-P., Chen L. Proteome-wide prediction of protein-protein interactions from high-throughput data. Protein Cell 2012, 3:508-520.
    • (2012) Protein Cell , vol.3 , pp. 508-520
    • Liu, Z.-P.1    Chen, L.2
  • 41
    • 33947328242 scopus 로고    scopus 로고
    • Choosing negative examples for the prediction of protein-protein interactions
    • Ben-Hur A., Noble W.S. Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinforma. 2006, 7(Suppl. 1):S2.
    • (2006) BMC Bioinforma. , vol.7 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 42
    • 0036088133 scopus 로고    scopus 로고
    • DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions
    • Xenarios I., Salwinski L., Duan X.J., Higney P., Kim S.M., Eisenberg D. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002, 30:303-305.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3    Higney, P.4    Kim, S.M.5    Eisenberg, D.6
  • 45
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
    • Hausser J., Strimmer K. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 2009, 10:1469-1484.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 46
    • 72949087964 scopus 로고    scopus 로고
    • Supervised learning with decision tree-based methods in computational and systems biology
    • Geurts P., Irrthum A., Wehenkel L. Supervised learning with decision tree-based methods in computational and systems biology. Mol. Biosyst. 2009, 5:1593-1605.
    • (2009) Mol. Biosyst. , vol.5 , pp. 1593-1605
    • Geurts, P.1    Irrthum, A.2    Wehenkel, L.3
  • 48
    • 75149162532 scopus 로고    scopus 로고
    • Active learning for human protein-protein interaction prediction
    • Thahir M., Jaime C., Madhavi G. Active learning for human protein-protein interaction prediction. BMC Bioinforma. 2010, 11.
    • (2010) BMC Bioinforma. , vol.11
    • Thahir, M.1    Jaime, C.2    Madhavi, G.3
  • 49
    • 84865446092 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS
    • Li B.Q., Feng K.Y., Chen L., Huang T., Cai Y.D. Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS. PLoS One 2012, 7:e43927.
    • (2012) PLoS One , vol.7
    • Li, B.Q.1    Feng, K.Y.2    Chen, L.3    Huang, T.4    Cai, Y.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.