-
1
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, and J. Klafter The random walk's guide to anomalous diffusion: a fractional dynamics approach Physics Reports 339 2000 1 77
-
(2000)
Physics Reports
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
2
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G.M. Zaslavsky Chaos, fractional kinetics, and anomalous transport Physics Reports 371 2002 461 580
-
(2002)
Physics Reports
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
3
-
-
70549107817
-
Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends
-
S. Shen, and F. Liu Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends ANZIAM J. 46 E 2005 C871 C887
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
-
-
Shen, S.1
Liu, F.2
-
4
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
DOI 10.1016/j.jcp.2005.08.008, PII S0021999105003773
-
C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler A second-order accurate numerical approximation for the fractional diffusion equation Journal of Computational Physics 213 2006 205 213 (Pubitemid 43174872)
-
(2006)
Journal of Computational Physics
, vol.213
, Issue.1
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.-P.3
-
5
-
-
36149001420
-
A fourier method for the fractional diffusion equation describing sub-diffusion
-
C.-M. Chen, F. Liu, I. Turner, and V. Anh A fourier method for the fractional diffusion equation describing sub-diffusion Journal of Computational Physics 227 2007 886 897
-
(2007)
Journal of Computational Physics
, vol.227
, pp. 886-897
-
-
Chen, C.-M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
6
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
DOI 10.1137/030602666
-
S.B. Yuste, and L. Acedo An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations SIAM Journal on Numerical Analysis 42 2005 1862 1874 (Pubitemid 41634613)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
7
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
DOI 10.1016/j.jcp.2005.12.006, PII S0021999105005516
-
S.B. Yuste Weighted average finite difference methods for fractional diffusion equations Journal of Computational Physics 216 2006 264 274 (Pubitemid 43632555)
-
(2006)
Journal of Computational Physics
, vol.216
, Issue.1
, pp. 264-274
-
-
Yuste, S.B.1
-
8
-
-
46049119633
-
Implicit finite difference approximation for time fractional diffusion equations
-
D.A. Murio Implicit finite difference approximation for time fractional diffusion equations Computer and Mathematics with Applications 56 2008 1138 1145
-
(2008)
Computer and Mathematics with Applications
, vol.56
, pp. 1138-1145
-
-
Murio, D.A.1
-
9
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
-
M.M. Meerschaert, and C. Tadjeran Finite difference approximations for fractional advection-dispersion flow equations Journal of Computational and Applied Mathematics 172 2004 65 77 (Pubitemid 39204390)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, Issue.1
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
10
-
-
64049113904
-
Finite difference approximations for a fractional advection diffusion problem
-
E. Sousa Finite difference approximations for a fractional advection diffusion problem Journal of Computational Physics 228 2009 4038 4054
-
(2009)
Journal of Computational Physics
, vol.228
, pp. 4038-4054
-
-
Sousa, E.1
-
11
-
-
33847315613
-
The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives
-
DOI 10.1016/j.advwatres.2006.11.002, PII S0309170806002077
-
X. Zhang, Lv. Mouchao, J.W. Crawford, and I.M. Young The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with Caputo derivatives Advances in Water Resources 30 2007 1205 1217 (Pubitemid 46323434)
-
(2007)
Advances in Water Resources
, vol.30
, Issue.5
, pp. 1205-1217
-
-
Zhang, X.1
Lv, M.2
Crawford, J.W.3
Young, I.M.4
-
12
-
-
55649099424
-
A finite element solution for the fractional advection-dispersion equation
-
Q. Huang, G. Huang, and H. Zhan A finite element solution for the fractional advection-dispersion equation Advances in Water Resources 31 2008 1578 1589
-
(2008)
Advances in Water Resources
, vol.31
, pp. 1578-1589
-
-
Huang, Q.1
Huang, G.2
Zhan, H.3
-
13
-
-
76449122108
-
A note on the finite element method for the space-fractional advection diffusion equation
-
Y. Zheng, C. Li, and Z. Zhao A note on the finite element method for the space-fractional advection diffusion equation Computer and Mathematics with Applications 59 2010 1718 1726
-
(2010)
Computer and Mathematics with Applications
, vol.59
, pp. 1718-1726
-
-
Zheng, Y.1
Li, C.2
Zhao, Z.3
-
14
-
-
34547673244
-
Stability and convergence of the difference methods for the spacetime fractional advection-diffusion equation
-
F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the spacetime fractional advection-diffusion equation Applied Mathematics and Computation 191 2006 12 20
-
(2006)
Applied Mathematics and Computation
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
15
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
S. Shen, F. Liu, V. Ahn, and I. Turner The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation IMA Journal of Applied Mathematics 73 2008 850 872
-
(2008)
IMA Journal of Applied Mathematics
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Ahn, V.3
Turner, I.4
|