메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 7419-7426

Two novel feature selection methods based on decomposition and composition

Author keywords

Composition; Decomposition; Feature selection; Master table; Sub table

Indexed keywords

COMPOSITION; DATA SETS; FEATURE SELECTION; FEATURE SELECTION METHODS; INDUCTION METHOD; KEY ISSUES; MASTER-TABLE; SUB-TABLE;

EID: 77955717181     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.03.039     Document Type: Article
Times cited : (3)

References (25)
  • 2
    • 60249087854 scopus 로고    scopus 로고
    • Solving a vehicle routing problem with time windows by a decomposition technique and a genetic algorithm
    • C.B. Cheng, and K.P. Wang Solving a vehicle routing problem with time windows by a decomposition technique and a genetic algorithm Expert Systems with Applications 36 2009 7758 7763
    • (2009) Expert Systems with Applications , vol.36 , pp. 7758-7763
    • Cheng, C.B.1    Wang, K.P.2
  • 7
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • E. Guyon An introduction to variable and feature selection Journal of Machine Learning Research 3 2003 1157 1182
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, E.1
  • 9
    • 0034655052 scopus 로고    scopus 로고
    • Decomposition in automatic generation of petri nets for manufacturing system control and scheduling
    • D.W. He, B. Strege, H. Tolle, and A. Kusiak Decomposition in automatic generation of petri nets for manufacturing system control and scheduling International Journal of Production Research 38 6 2000 1437 1457
    • (2000) International Journal of Production Research , vol.38 , Issue.6 , pp. 1437-1457
    • He, D.W.1    Strege, B.2    Tolle, H.3    Kusiak, A.4
  • 10
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Q.H. Hu, J.F. Liu, and D. Yu Mixed feature selection based on granulation and approximation Knowledge-Based Systems 21 2008 294 304
    • (2008) Knowledge-Based Systems , vol.21 , pp. 294-304
    • Hu, Q.H.1    Liu, J.F.2    Yu, D.3
  • 11
    • 0034290324 scopus 로고    scopus 로고
    • Decomposition in data mining: An industrial case study
    • DOI 10.1109/6104.895081
    • A. Kusiak Decomposition in data mining: An industrial case study IEEE Transactions on Electronics Packaging Manufacturing 23 4 2000 345 353 (Pubitemid 32190928)
    • (2000) IEEE Transactions on Electronics Packaging Manufacturing , vol.23 , Issue.4 , pp. 345-353
    • Kusiak, A.1
  • 17
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • N.M. Parthalin, and Q. Shen Exploring the boundary region of tolerance rough sets for feature selection Pattern Recognition 42 2009 655 667
    • (2009) Pattern Recognition , vol.42 , pp. 655-667
    • Parthalin, N.M.1    Shen, Q.2
  • 19
    • 33749359793 scopus 로고    scopus 로고
    • Decomposition methodology for classification tasks: A meta decomposer framework
    • L. Rokach Decomposition methodology for classification tasks: A meta decomposer framework Pattern Analysis and Applications 9 2006 257 271
    • (2006) Pattern Analysis and Applications , vol.9 , pp. 257-271
    • Rokach, L.1
  • 20
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognition Letters 24 2003 833 849
    • (2003) Pattern Recognition Letters , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 22
    • 38649088943 scopus 로고    scopus 로고
    • A novel condensing tree structure for rough set feature selection
    • M. Yang, and P. Yang A novel condensing tree structure for rough set feature selection Neurocomputing 71 2008 1092 1100
    • (2008) Neurocomputing , vol.71 , pp. 1092-1100
    • Yang, M.1    Yang, P.2
  • 23
    • 58249098798 scopus 로고    scopus 로고
    • Discernibility matrix simplification for constructing attribute reducts
    • Y.Y. Yao, and Y. Zhao Discernibility matrix simplification for constructing attribute reducts Information Sciences 179 2009 867 882
    • (2009) Information Sciences , vol.179 , pp. 867-882
    • Yao, Y.Y.1    Zhao, Y.2
  • 24
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and reducdancy
    • L. Yu, and H. Liu Efficient feature selection via analysis of relevance and reducdancy Journal of Machine Learning Research 5 2004 1205 1224
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 25
    • 35248812485 scopus 로고    scopus 로고
    • An approach to rough set decomposition of incomplete information systems
    • Harbin, China
    • Zhang, Q. Z. (2007). An approach to rough set decomposition of incomplete information systems. In IEEE conference on industrial electronics and applications, Harbin, China (pp. 2455-2460).
    • (2007) IEEE Conference on Industrial Electronics and Applications , pp. 2455-2460
    • Zhang, Q.Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.