-
1
-
-
58249117311
-
-
J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wroblewski, Rough set algorithms in classification problem, in: L. Polkowski, S. Tsumoto, T.Y. Lin (Eds.), Rough Set Methods and Applications, 2000, pp. 49-88.
-
J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wroblewski, Rough set algorithms in classification problem, in: L. Polkowski, S. Tsumoto, T.Y. Lin (Eds.), Rough Set Methods and Applications, 2000, pp. 49-88.
-
-
-
-
2
-
-
0032137218
-
Information-theoretic measures of uncertainty for rough sets and rough relational databases
-
Beaubouef T., Petry F.E., and Arora G. Information-theoretic measures of uncertainty for rough sets and rough relational databases. Information Sciences 109 (1998) 185-195
-
(1998)
Information Sciences
, vol.109
, pp. 185-195
-
-
Beaubouef, T.1
Petry, F.E.2
Arora, G.3
-
3
-
-
19944424801
-
On the compact computational domain of fuzzy-rough sets
-
Bhatt R.B., and Gopal M. On the compact computational domain of fuzzy-rough sets. Pattern Recognition Letters 6 (2005) 1632-1640
-
(2005)
Pattern Recognition Letters
, vol.6
, pp. 1632-1640
-
-
Bhatt, R.B.1
Gopal, M.2
-
4
-
-
34250357173
-
A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets
-
Chen D.G., Wang C.Z., and Hu Q.H. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Information Sciences 177 (2007) 3500-3518
-
(2007)
Information Sciences
, vol.177
, pp. 3500-3518
-
-
Chen, D.G.1
Wang, C.Z.2
Hu, Q.H.3
-
6
-
-
0032180332
-
Rough computational methods for information systems
-
Guan J.W., and Bell D.A. Rough computational methods for information systems. Artificial Intelligence 105 (1998) 77-103
-
(1998)
Artificial Intelligence
, vol.105
, pp. 77-103
-
-
Guan, J.W.1
Bell, D.A.2
-
8
-
-
34548621139
-
Quick reduction algorithm based on attribute order
-
Hu F., and Wang G.Y. Quick reduction algorithm based on attribute order. Chinese Journal of Computers 30 (2007) 1429-1435
-
(2007)
Chinese Journal of Computers
, vol.30
, pp. 1429-1435
-
-
Hu, F.1
Wang, G.Y.2
-
9
-
-
34547699509
-
Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
-
Hu Q.H., Xie Z.X., and Yu D.R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40 (2007) 3509-3521
-
(2007)
Pattern Recognition
, vol.40
, pp. 3509-3521
-
-
Hu, Q.H.1
Xie, Z.X.2
Yu, D.R.3
-
10
-
-
32644440353
-
Information-preserving hybrid data reduction based on fuzzy-rough techniques
-
Hu Q.H., Yu D.R., and Xie Z.X. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 27 (2006) 414-423
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 414-423
-
-
Hu, Q.H.1
Yu, D.R.2
Xie, Z.X.3
-
11
-
-
10944249572
-
Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
-
Jensen R., and Shen Q. Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16 (2004) 1457-1471
-
(2004)
IEEE Transactions on Knowledge and Data Engineering
, vol.16
, pp. 1457-1471
-
-
Jensen, R.1
Shen, Q.2
-
12
-
-
16244396746
-
Knowledge acquisition in incomplete information systems: a rough set approach
-
Leung Y., Wu W.Z., and Zhang W.X. Knowledge acquisition in incomplete information systems: a rough set approach. European Journal of Operational Research 168 (2006) 164-180
-
(2006)
European Journal of Operational Research
, vol.168
, pp. 164-180
-
-
Leung, Y.1
Wu, W.Z.2
Zhang, W.X.3
-
13
-
-
34447548592
-
User-oriented feature selection for machine learning
-
Liang H.L., Wang J., and Yao Y.Y. User-oriented feature selection for machine learning. Computer Journal 50 (2007) 421-434
-
(2007)
Computer Journal
, vol.50
, pp. 421-434
-
-
Liang, H.L.1
Wang, J.2
Yao, Y.Y.3
-
15
-
-
1642525195
-
Approaches to knowledge reduction based on variable precision rough set model
-
Mi J.S., Wu W.Z., and Zhang W.X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159 (2004) 255-272
-
(2004)
Information Sciences
, vol.159
, pp. 255-272
-
-
Mi, J.S.1
Wu, W.Z.2
Zhang, W.X.3
-
17
-
-
51049086390
-
Approximate Boolean reasoning: foundations and applications in data mining
-
LNCS 4100
-
Nguyen H.S. Approximate Boolean reasoning: foundations and applications in data mining. Transactions on Rough Sets 5 (2006) 334-506 LNCS 4100
-
(2006)
Transactions on Rough Sets
, vol.5
, pp. 334-506
-
-
Nguyen, H.S.1
-
18
-
-
58249095636
-
-
S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Proceedings of the International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems, 1996, pp. 1451-1456.
-
S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Proceedings of the International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems, 1996, pp. 1451-1456.
-
-
-
-
22
-
-
33749668975
-
Rough sets and Boolean reasoning
-
Pawlak Z., and Skowron A. Rough sets and Boolean reasoning. Information Sciences 177 (2007) 41-73
-
(2007)
Information Sciences
, vol.177
, pp. 41-73
-
-
Pawlak, Z.1
Skowron, A.2
-
23
-
-
0033889022
-
α-RST: a generalization of rough set theory
-
Quafafou M. α-RST: a generalization of rough set theory. Information Sciences 124 (2000) 301-316
-
(2000)
Information Sciences
, vol.124
, pp. 301-316
-
-
Quafafou, M.1
-
25
-
-
58249106474
-
-
RSES. .
-
RSES. .
-
-
-
-
26
-
-
0002395767
-
The discernibility matrices and functions in information systems
-
Intelligent Decision Support. Slowiński R. (Ed), Kluwer, Dordrecht
-
Skowron A., and Rauszer C. The discernibility matrices and functions in information systems. In: Slowiński R. (Ed). Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory (1992), Kluwer, Dordrecht
-
(1992)
Handbook of Applications and Advances of the Rough Sets Theory
-
-
Skowron, A.1
Rauszer, C.2
-
28
-
-
0036662454
-
Decision table reduction based on conditional information entropy
-
Wang G.Y., Yu H., and Yang D. Decision table reduction based on conditional information entropy. Chinese Journal of Computers 25 (2002) 759-766
-
(2002)
Chinese Journal of Computers
, vol.25
, pp. 759-766
-
-
Wang, G.Y.1
Yu, H.2
Yang, D.3
-
30
-
-
0035505464
-
Reduction algorithms based on discernibility matrix: the ordered attributes method
-
Wang J., and Wang J. Reduction algorithms based on discernibility matrix: the ordered attributes method. Journal of Computer Science and Technology 16 (2001) 489-504
-
(2001)
Journal of Computer Science and Technology
, vol.16
, pp. 489-504
-
-
Wang, J.1
Wang, J.2
-
32
-
-
21244455292
-
Knowledge reduction in random information systems via Dempster-Shafer theory of evidence
-
Wu W.Z., Zhang M., Li H.Z., and Mi J.S. Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174 (2005) 143-164
-
(2005)
Information Sciences
, vol.174
, pp. 143-164
-
-
Wu, W.Z.1
Zhang, M.2
Li, H.Z.3
Mi, J.S.4
-
33
-
-
33845262851
-
-
Y.Y. Yao, Y. Zhao, J. Wang, S.Q. Han, A model of machine learning based on user preference of attributes, in: Proceedings of International Conference on Rough Sets and Current Trends in Computing, 2006, pp. 587-596.
-
Y.Y. Yao, Y. Zhao, J. Wang, S.Q. Han, A model of machine learning based on user preference of attributes, in: Proceedings of International Conference on Rough Sets and Current Trends in Computing, 2006, pp. 587-596.
-
-
-
-
35
-
-
0037621960
-
Reduction and axiomization of covering generalized rough sets
-
Zhu W., and Wang F.Y. Reduction and axiomization of covering generalized rough sets. Information Sciences 152 (2003) 217-230
-
(2003)
Information Sciences
, vol.152
, pp. 217-230
-
-
Zhu, W.1
Wang, F.Y.2
-
37
-
-
58249120219
-
-
W. Ziarko, Rough set approaches for discovering rules and attribute dependencies, in: W. Klösgen, J.M. Żytkow (Eds.), Handbook of Data Mining and Knowledge Discovery, Oxford, 2000, pp. 328-339.
-
W. Ziarko, Rough set approaches for discovering rules and attribute dependencies, in: W. Klösgen, J.M. Żytkow (Eds.), Handbook of Data Mining and Knowledge Discovery, Oxford, 2000, pp. 328-339.
-
-
-
|