-
1
-
-
6944244084
-
A module map showing conditional activity of expression modules in cancer
-
Segal, E., Friedman, N., Koller, D. and Regev, A. (2004). A module map showing conditional activity of expression modules in cancer. Nature genet.. 36, 1090-1098.
-
(2004)
Nature genet.
, vol.36
, pp. 1090-1098
-
-
Segal, E.1
Friedman, N.2
Koller, D.3
Regev, A.4
-
2
-
-
0032758081
-
A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM
-
Tyson, J.J., Hong, C.I., Thron, C.D. and Novak, B. (1999). A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM, Biophys J., 77,. 2411-2417.
-
(1999)
Biophys J.
, vol.77
, pp. 2411-2417
-
-
Tyson, J.J.1
Hong, C.I.2
Thron, C.D.3
Novak, B.4
-
3
-
-
0036957459
-
Deterministic versus Stochastic Models for Circadian Rhythms
-
Gonze, D., Halloy, J. and Goldbeter, A. (2002). Deterministic versus Stochastic Models for Circadian Rhythms. J Biol Phys. 28, 637-635.
-
(2002)
J Biol Phys.
, vol.28
, pp. 635-637
-
-
Gonze, D.1
Halloy, J.2
Goldbeter, A.3
-
5
-
-
0007678353
-
Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, “labyrinth chaos”
-
Thomas, R. (1999). Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos”., Int J Bifurcation and Chaos. 9, 1889-1905.
-
(1999)
Int J Bifurcation and Chaos
, vol.9
, pp. 1889-1905
-
-
Thomas, R.1
-
6
-
-
0036207347
-
Modeling and Simulation of Genetic Regulatory Systems: A literature review
-
De Jong, H. (2002). Modeling and Simulation of Genetic Regulatory Systems: a literature review. Journal of Computational Biology. 9, 67-103.
-
(2002)
Journal of Computational Biology
, vol.9
, pp. 67-103
-
-
De Jong, H.1
-
7
-
-
24044438215
-
R. Thomas’ modeling of biological regulatory networks: Introduction of singular states in the qualitative dynamics
-
Richard, A., Comet, J.P. and Bernot, G. (2005). R. Thomas’ modeling of biological regulatory networks: introduction of singular states in the qualitative dynamics. Fundamenta Informaticae. 65, 373-392.
-
(2005)
Fundamenta Informaticae.
, vol.65
, pp. 373-392
-
-
Richard, A.1
Comet, J.P.2
Bernot, G.3
-
8
-
-
33646107783
-
Large-Sample Learning of Bayesian Networks is NP-Hard, J
-
Chickering, D.M., Heckerman, D. and Meek, C. (2004). Large-Sample Learning of Bayesian Networks is NP-Hard, J. Machine Learning Research. 5, 1287-1330.
-
(2004)
Machine Learning Research.
, vol.5
, pp. 1287-1330
-
-
Chickering, D.M.1
Heckerman, D.2
Meek, C.3
-
11
-
-
0031742022
-
Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization
-
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, D.V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998). Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell. 9, 12, 3273-3297.
-
(1998)
Molecular Biology of the Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, D.V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
12
-
-
0035162698
-
Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
-
Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J. and Brown, P.O. (2001). Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell. 12, 2987-3003.
-
(2001)
Mol Biol Cell.
, vol.12
, pp. 2987-3003
-
-
Gasch, A.P.1
Huang, M.2
Metzner, S.3
Botstein, D.4
Elledge, S.J.5
Brown, P.O.6
-
13
-
-
0042848806
-
For differential equations with r parameters, 2r+1 experiments are enough for identification
-
Sontag, E.D. (2002). For differential equations with r parameters, 2r+1 experiments are enough for identification. J Nonlinear Sci. 12, 553-583.
-
(2002)
J Nonlinear Sci.
, vol.12
, pp. 553-583
-
-
Sontag, E.D.1
-
14
-
-
85115958692
-
-
Proceedings of the Workshop on Discrete Mathematics and Data Mining, 3rd SIAM International Conference on Data Mining, San Francisco
-
Anthony, M. (2003). Data Classification by Multi-threshold Functions. Proceedings of the Workshop on Discrete Mathematics and Data Mining, 3rd SIAM International Conference on Data Mining, San Francisco.
-
(2003)
Data Classification by Multi-threshold Functions
-
-
Anthony, M.1
-
15
-
-
8444245968
-
Temporal Aggregation Bias and Inference of causal Regulatory Networks
-
Bay, S. D., Chrisman, L. and Pohorille, A. (2004). Temporal Aggregation Bias and Inference of causal Regulatory Networks, Journal of Computational Biology. 11, 971-85.
-
(2004)
Journal of Computational Biology
, vol.11
, pp. 971-985
-
-
Bay, S.D.1
Chrisman, L.2
Pohorille, A.3
-
16
-
-
0000351727
-
Investigating causal relations by econometric models and cross-spectral methods
-
Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 37, 424-438.
-
(1969)
Econometrica.
, vol.37
, pp. 424-438
-
-
Granger, C.W.J.1
-
17
-
-
33645307955
-
Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
-
Bansal, M., Della Gatta, G. and di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 22, 815-822.
-
(2006)
Bioinformatics.
, vol.22
, pp. 815-822
-
-
Bansal, M.1
Della Gatta, G.2
Di Bernardo, D.3
-
18
-
-
0032616683
-
Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
-
Akutsu, T., Miyano, S. and Kuhara, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing. 4, 17-28.
-
(1999)
Pacific Symposium on Biocomputing.
, vol.4
, pp. 17-28
-
-
Akutsu, T.1
Miyano, S.2
Kuhara, S.3
-
19
-
-
0344611758
-
Temporal boolean network models of genetic networks and their inference from gene expression time series
-
Silescu, A. and Honavar, V. (1997). Temporal boolean network models of genetic networks and their inference from gene expression time series. Complex systems. 11, 1-18.
-
(1997)
Complex systems.
, vol.11
, pp. 1-18
-
-
Silescu, A.1
Honavar, V.2
-
20
-
-
0033736476
-
Genetic Network Inference:Form co-expression clustering to reverse-engineering
-
D’Haeseleer, P., Liang, S. and Somogyi, R. (2000). Genetic Network Inference:form co-expression clustering to reverse-engineering. Bioinformatics. 16, 707-726.
-
(2000)
Bioinformatics.
, vol.16
, pp. 707-726
-
-
D’Haeseleer, P.1
Liang, S.2
Somogyi, R.3
-
21
-
-
22144491187
-
-
Elsevier, Academic Press
-
Hirsch, M.W., Devaney, R.L. and Smale, S. (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier, Academic Press.
-
(2004)
Differential Equations, Dynamical Systems, and an Introduction to Chaos
-
-
Hirsch, M.W.1
Devaney, R.L.2
Smale, S.3
-
22
-
-
0031029852
-
Stochastic mechanisms in gene expression
-
McAdams, H.H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc Natl Acad Sci U.S.A. 4, 94, 814-9.
-
(1997)
Proc Natl Acad Sci U.S.A.
, vol.4
, Issue.94
, pp. 814-819
-
-
McAdams, H.H.1
Arkin, A.2
-
23
-
-
25444468618
-
Noise in Gene Expression: Origins, Consequences, and Control
-
Raser, J.M. and O’Shea, E.K. (2005). Noise in Gene Expression: Origins, Consequences, and Control. Science. 309, 2010-2013.
-
(2005)
Science.
, vol.309
, pp. 2010-2013
-
-
Raser, J.M.1
O’Shea, E.K.2
-
24
-
-
32644431906
-
Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
-
Lähdesmäki, H., Hautaniemi, S., Shmulevitch, I. and Yliy-Haria, O. (2006). Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Processing. 86, 814-834.
-
(2006)
Signal Processing.
, vol.86
, pp. 814-834
-
-
Lähdesmäki, H.1
Hautaniemi, S.2
Shmulevitch, I.3
Yliy-Haria, O.4
-
25
-
-
0043130707
-
Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations
-
de Hoon, M.J.L., Seiya Imoto, S., Kobayashi, K., Ogasawara, N., and Miyano, S. (2003). Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations. Pacific Symposium on Biocomputing. 2003, 17-28.
-
(2003)
Pacific Symposium on Biocomputing.
, vol.2003
, pp. 17-28
-
-
De Hoon, M.J.L.1
Seiya Imoto, S.2
Kobayashi, K.3
Ogasawara, N.4
Miyano, S.5
-
26
-
-
0032611513
-
Modeling Gene Expression with Differential Equations
-
Chen, T., Hongyu, L., He, H.L. and Church, G.M. (1999). Modeling Gene Expression with Differential Equations. Proceedings of Pacific Symposium on Biocomputing. 1999, 29-40.
-
(1999)
Proceedings of Pacific Symposium on Biocomputing.
, vol.1999
, pp. 29-40
-
-
Chen, T.1
Hongyu, L.2
He, H.L.3
Church, G.M.4
-
27
-
-
36549060902
-
Inference of gene regulatory network with Dynamic Bayesian Network
-
Perrin, B.E., Lahaye, P.J., Ralaivola, L., Mazurie, A., Bottani S., Mallet, J. and d’Alché-Buc, F. (2003). Inference of gene regulatory network with Dynamic Bayesian Network. Bioinformatics. 19, i38-i49.
-
(2003)
Bioinformatics
, vol.19
, pp. i38-i49
-
-
Perrin, B.E.1
Lahaye, P.J.2
Ralaivola, L.3
Mazurie, A.4
Bottani, S.5
Mallet, J.6
D’Alché-Buc, F.7
-
28
-
-
41049103902
-
-
Seiffert, U.; Jain, L.C.; Schweizer, P. (eds.), Springer
-
d’Alché-Buc, F., Lahaye, P.J., Perrin, B.E., Ralaivola, L., Vujasinovic, T., Mazurie, A. and Bottani S. (2005). Dynamic model of gene regulatory networks based on inertia principle, Bioinformatics Using Computational Intelligence Paradigms, Series: Studies in Fuzziness and Soft Computing, Vol. 176. Seiffert, U.; Jain, L.C.; Schweizer, P. (eds.), Springer. 93-117.
-
(2005)
Dynamic model of gene regulatory networks based on inertia principle, Bioinformatics Using Computational Intelligence Paradigms, Series: Studies in Fuzziness and Soft Computing
, vol.176
, pp. 93-117
-
-
D’Alché-Buc, F.1
Lahaye, P.J.2
Perrin, B.E.3
Ralaivola, L.4
Vujasinovic, T.5
Mazurie, A.6
Bottani, S.7
-
29
-
-
85069778578
-
-
Proc of ESANN, M. Verleysen, Bruges 2006
-
Quach, H.M., Geurts, P. and d’Alché-Buc, F. (2006). Elucidating the structure of genetic regulatory networks. Proc of ESANN, M. Verleysen, Bruges 2006, 26-28, 569-574.
-
(2006)
Elucidating the structure of genetic regulatory networks
, vol.26-28
, pp. 569-574
-
-
Quach, H.M.1
Geurts, P.2
D’Alché-Buc, F.3
-
30
-
-
3142744689
-
Modelling T-cell activation using gene expression profiling and state space models
-
Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D.L. and Falciani, F. (2004). Modelling T-cell activation using gene expression profiling and state space models. Bioinformatics. 20, 1361-1372.
-
(2004)
Bioinformatics.
, vol.20
, pp. 1361-1372
-
-
Rangel, C.1
Angus, J.2
Ghahramani, Z.3
Lioumi, M.4
Sotheran, E.5
Gaiba, A.6
Wild, D.L.7
Falciani, F.8
-
31
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal M.B., Falciani, F., Ghahramani, Z., Rangel, C. and Wild, D. (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics. 21, 349-356.
-
(2005)
Bioinformatics.
, vol.21
, pp. 349-356
-
-
Beal, M.B.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.5
-
32
-
-
85115927794
-
Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
Kim, S., Imoto, S. and Miyano S. (2003). Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Proc. of CMSB. 2003, 104-113.
-
(2003)
Proc. of CMSB.
, vol.2003
, pp. 104-113
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
33
-
-
0031879114
-
Stochastic kinetic analysis of developmental pathway bifurcation in phage {lambda}-Infected Escherichia coli cells
-
Arkin, A., Ross, J. and McAdams, H.H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage {lambda}-Infected Escherichia coli cells. Genetics. 149, 1633-1648.
-
(1998)
Genetics.
, vol.149
, pp. 1633-1648
-
-
Arkin, A.1
Ross, J.2
McAdams, H.H.3
-
34
-
-
0344844806
-
Local identifiability: When can genetic networks be inferred from microarray data?
-
December 12-14, Stockholm, Sweden Karolinska Institute
-
Zak, D., Doyle, F. and Schwaber, J. (2002). Local identifiability: when can genetic networks be inferred from microarray data? Proceedings of the Third International Conference on Systems Biology, December 12-14, Stockholm, Sweden Karolinska Institute. 236-237.
-
(2002)
Proceedings of the Third International Conference on Systems Biology
, pp. 236-237
-
-
Zak, D.1
Doyle, F.2
Schwaber, J.3
-
35
-
-
14844307159
-
Inferring quantitative models of regulatory networks from expression data
-
Nachman, I., Regev, A. and Friedman, N. (2004). Inferring quantitative models of regulatory networks from expression data. Bioinformatics. 20, 248-256.
-
(2004)
Bioinformatics.
, vol.20
, pp. 248-256
-
-
Nachman, I.1
Regev, A.2
Friedman, N.3
-
36
-
-
0033707946
-
Using Bayesian Network to Analyze Expression Data
-
Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000). Using Bayesian Network to Analyze Expression Data. J Computational Biology. 7, 601-620.
-
(2000)
J Computational Biology.
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe’er, D.4
-
37
-
-
0036522639
-
Bayesian methods for elucidating genetic regulatory networks
-
Hartemink, A., Gifford, D., Jaakkola, T. and Young, R. (2002). Bayesian methods for elucidating genetic regulatory networks. IEEE Intelligent Systems, special issue on Intelligent Systems in Biology. 17, 37-43.
-
(2002)
IEEE Intelligent Systems, special issue on Intelligent Systems in Biology.
, vol.17
, pp. 37-43
-
-
Hartemink, A.1
Gifford, D.2
Jaakkola, T.3
Young, R.4
-
38
-
-
0842288337
-
Inferring Cellular Networks Using Probabilistic Graphical Models
-
Friedman, N. (2004). Inferring Cellular Networks Using Probabilistic Graphical Models. Science. 303, 799-805.
-
(2004)
Science.
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
39
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271-2282.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
40
-
-
15944361900
-
Informative Structure Priors: Joint Learning of Dynamic Regulatory Networks from Multiple Types of Data
-
Altman, R., Dunker, A.K., Hunter, L., Jung, T. and Klein, T., eds. World Scientific: New Jersey
-
Bernard, A. and Hartemink, A. (2005). Informative Structure Priors: Joint Learning of Dynamic Regulatory Networks from Multiple Types of Data. Pacific Symposium on Biocomputing 2005 (PSB’05), Altman, R., Dunker, A.K., Hunter, L., Jung, T. and Klein, T., eds. World Scientific: New Jersey. 459-470.
-
(2005)
Pacific Symposium on Biocomputing 2005 (PSB’05)
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.2
-
41
-
-
0035237805
-
Rich probabilistic models for gene expression
-
Segal E., Taskar B., Gasch A., Friedman N. and Koller D. (2001). Rich probabilistic models for gene expression. Bioinformatics. 17, S243-52.
-
(2001)
Bioinformatics
, vol.17
, pp. S243-S252
-
-
Segal, E.1
Taskar, B.2
Gasch, A.3
Friedman, N.4
Koller, D.5
-
42
-
-
85115938389
-
-
August 7-10 2003, Acapulco, Mexico, Christopher Meek and Uffe Kjaerulff (eds), Morgan Kaufmann
-
Segal E., Pe’er D., Regev A., Koller D. and Friedman N. (2003). Learning module networks. Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, August 7-10 2003, Acapulco, Mexico, Christopher Meek and Uffe Kjaerulff (eds), Morgan Kaufmann. 523-524.
-
(2003)
Learning module networks. Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence
, pp. 523-524
-
-
Segal, E.1
Pe’er, D.2
Regev, A.3
Koller, D.4
Friedman, N.5
-
43
-
-
85115939941
-
The factor graph network model for biological systems
-
Gat-Vicks I., Tanay A., Raijman D. and Shamir, R. (2005). The factor graph network model for biological systems. The factor graph network model for biological systems. RECOMB 2005, Lecture Notes in Bioinformatics 3500, Springer, Berlin. 31647, 31-45.
-
(2005)
The factor graph network model for biological systems. RECOMB 2005, Lecture Notes in Bioinformatics 3500, Springer, Berlin.
, vol.31647
, pp. 31-45
-
-
Gat-Vicks, I.1
Tanay, A.2
Raijman, D.3
Shamir, R.4
-
44
-
-
0035246564
-
Factor Graphs and the Sum-Product Algorithm
-
Kschischang, F.R., Frey, B.J., and Loeliger H.A. (2001). Factor Graphs and the Sum-Product Algorithm. Trans. IEEE on Information theory. 47, 498-519.
-
(2001)
Trans. IEEE on Information theory.
, vol.47
, pp. 498-519
-
-
Kschischang, F.R.1
Frey, B.J.2
Loeliger, H.A.3
-
45
-
-
0031635795
-
Probabilistic Frame-Based System
-
Koller, D. and Pfeffer, A. (1998). Probabilistic Frame-Based System. Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA. AAAI Press /The MIT Press. 1998, 580-587.
-
(1998)
Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA. AAAI Press /The MIT Press.
, vol.1998
, pp. 580-587
-
-
Koller, D.1
Pfeffer, A.2
-
46
-
-
84898940253
-
From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data”
-
E. Mjolsness, T. Mann, R. Castaño, and B. Wold, Solla, S., Leen, T. K., Mueller, K.-R. (eds)
-
Mjolsness, E., Mann, T., Castaño, R. and Wold, B. (2000). From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data”, E. Mjolsness, T. Mann, R. Castaño, and B. Wold. Advances in Neural Information Processing Systems 12, Solla, S., Leen, T. K., Mueller, K.-R. (eds). 928-936.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 928-936
-
-
Mjolsness, E.1
Mann, T.2
Castaño, R.3
Wold, B.4
-
47
-
-
0004158155
-
-
Technical report, Computer Science Division, University of California, Berkeley, CA
-
Murphy, K. and Mian, S. (1999). Modelling gene expression data using dynamic Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley, CA.
-
(1999)
Modelling gene expression data using dynamic Bayesian networks
-
-
Murphy, K.1
Mian, S.2
-
49
-
-
10244255213
-
Biologically valid linear factor models of gene expression
-
Girolami, M. and Breitling, R. (2004). Biologically valid linear factor models of gene expression. Bioinformatics. 20, 3021-3033.
-
(2004)
Bioinformatics.
, vol.20
, pp. 3021-3033
-
-
Girolami, M.1
Breitling, R.2
-
50
-
-
33646338193
-
Minreg: A Scalable Algorithm for Learning Parsimonious Regulatory networks in Yeast and Mammals
-
Pe’er, D., Regev, A. and Tanay, A. (2006). Minreg: A Scalable Algorithm for Learning Parsimonious Regulatory networks in Yeast and Mammals, Journal of Machine Learning Research. 7, 167-189.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 167-189
-
-
Pe’er, D.1
Regev, A.2
Tanay, A.3
-
51
-
-
12344259602
-
Advances to bayesian network inference for generating causal networks from observational biological data
-
Yu, J., Smith, V., Wang, P., Hartemink, A. and Jarvis, E. (2004). Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics. 20, 3594-3603.
-
(2004)
Bioinformatics.
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.2
Wang, P.3
Hartemink, A.4
Jarvis, E.5
-
52
-
-
33947305781
-
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a Mammalian cellular context
-
Margolin, A., Nemenman, I., Basso K., Wiggins, C., Stolovitzky G., Dalla Favera, R., Califano. (2006). ARACNE: An algorithm for the reconstruction of gene regulatory networks in a Mammalian cellular context. BMC Bioinformatics 7 (Suppl 1):S7.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. S7
-
-
Margolin, A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Dalla Favera, R.6
Califano7
-
53
-
-
1642336155
-
Functional genomic hypothesis generation and experimentation by a robot scientist
-
King, R.D, Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B. and Oliver, S.G. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature. 427, 247-252.
-
(2004)
Nature.
, vol.427
, pp. 247-252
-
-
King, R.D.1
Whelan, K.E.2
Jones, F.M.3
Reiser, P.G.K.4
Bryant, C.H.5
Muggleton, S.H.6
Kell, D.B.7
Oliver, S.G.8
|