메뉴 건너뛰기




Volumn , Issue , 2007, Pages 41-82

Inference of biological regulatory networks: Machine learning approaches

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84886022717     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/9789812772367_0003     Document Type: Chapter
Times cited : (4)

References (53)
  • 1
    • 6944244084 scopus 로고    scopus 로고
    • A module map showing conditional activity of expression modules in cancer
    • Segal, E., Friedman, N., Koller, D. and Regev, A. (2004). A module map showing conditional activity of expression modules in cancer. Nature genet.. 36, 1090-1098.
    • (2004) Nature genet. , vol.36 , pp. 1090-1098
    • Segal, E.1    Friedman, N.2    Koller, D.3    Regev, A.4
  • 2
    • 0032758081 scopus 로고    scopus 로고
    • A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM
    • Tyson, J.J., Hong, C.I., Thron, C.D. and Novak, B. (1999). A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM, Biophys J., 77,. 2411-2417.
    • (1999) Biophys J. , vol.77 , pp. 2411-2417
    • Tyson, J.J.1    Hong, C.I.2    Thron, C.D.3    Novak, B.4
  • 3
    • 0036957459 scopus 로고    scopus 로고
    • Deterministic versus Stochastic Models for Circadian Rhythms
    • Gonze, D., Halloy, J. and Goldbeter, A. (2002). Deterministic versus Stochastic Models for Circadian Rhythms. J Biol Phys. 28, 637-635.
    • (2002) J Biol Phys. , vol.28 , pp. 635-637
    • Gonze, D.1    Halloy, J.2    Goldbeter, A.3
  • 5
    • 0007678353 scopus 로고    scopus 로고
    • Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, “labyrinth chaos”
    • Thomas, R. (1999). Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “labyrinth chaos”., Int J Bifurcation and Chaos. 9, 1889-1905.
    • (1999) Int J Bifurcation and Chaos , vol.9 , pp. 1889-1905
    • Thomas, R.1
  • 6
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and Simulation of Genetic Regulatory Systems: A literature review
    • De Jong, H. (2002). Modeling and Simulation of Genetic Regulatory Systems: a literature review. Journal of Computational Biology. 9, 67-103.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • De Jong, H.1
  • 7
    • 24044438215 scopus 로고    scopus 로고
    • R. Thomas’ modeling of biological regulatory networks: Introduction of singular states in the qualitative dynamics
    • Richard, A., Comet, J.P. and Bernot, G. (2005). R. Thomas’ modeling of biological regulatory networks: introduction of singular states in the qualitative dynamics. Fundamenta Informaticae. 65, 373-392.
    • (2005) Fundamenta Informaticae. , vol.65 , pp. 373-392
    • Richard, A.1    Comet, J.P.2    Bernot, G.3
  • 8
  • 12
    • 0035162698 scopus 로고    scopus 로고
    • Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
    • Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J. and Brown, P.O. (2001). Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell. 12, 2987-3003.
    • (2001) Mol Biol Cell. , vol.12 , pp. 2987-3003
    • Gasch, A.P.1    Huang, M.2    Metzner, S.3    Botstein, D.4    Elledge, S.J.5    Brown, P.O.6
  • 13
    • 0042848806 scopus 로고    scopus 로고
    • For differential equations with r parameters, 2r+1 experiments are enough for identification
    • Sontag, E.D. (2002). For differential equations with r parameters, 2r+1 experiments are enough for identification. J Nonlinear Sci. 12, 553-583.
    • (2002) J Nonlinear Sci. , vol.12 , pp. 553-583
    • Sontag, E.D.1
  • 14
    • 85115958692 scopus 로고    scopus 로고
    • Proceedings of the Workshop on Discrete Mathematics and Data Mining, 3rd SIAM International Conference on Data Mining, San Francisco
    • Anthony, M. (2003). Data Classification by Multi-threshold Functions. Proceedings of the Workshop on Discrete Mathematics and Data Mining, 3rd SIAM International Conference on Data Mining, San Francisco.
    • (2003) Data Classification by Multi-threshold Functions
    • Anthony, M.1
  • 15
    • 8444245968 scopus 로고    scopus 로고
    • Temporal Aggregation Bias and Inference of causal Regulatory Networks
    • Bay, S. D., Chrisman, L. and Pohorille, A. (2004). Temporal Aggregation Bias and Inference of causal Regulatory Networks, Journal of Computational Biology. 11, 971-85.
    • (2004) Journal of Computational Biology , vol.11 , pp. 971-985
    • Bay, S.D.1    Chrisman, L.2    Pohorille, A.3
  • 16
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 37, 424-438.
    • (1969) Econometrica. , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 17
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M., Della Gatta, G. and di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 22, 815-822.
    • (2006) Bioinformatics. , vol.22 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    Di Bernardo, D.3
  • 18
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T., Miyano, S. and Kuhara, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing. 4, 17-28.
    • (1999) Pacific Symposium on Biocomputing. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 19
    • 0344611758 scopus 로고    scopus 로고
    • Temporal boolean network models of genetic networks and their inference from gene expression time series
    • Silescu, A. and Honavar, V. (1997). Temporal boolean network models of genetic networks and their inference from gene expression time series. Complex systems. 11, 1-18.
    • (1997) Complex systems. , vol.11 , pp. 1-18
    • Silescu, A.1    Honavar, V.2
  • 20
    • 0033736476 scopus 로고    scopus 로고
    • Genetic Network Inference:Form co-expression clustering to reverse-engineering
    • D’Haeseleer, P., Liang, S. and Somogyi, R. (2000). Genetic Network Inference:form co-expression clustering to reverse-engineering. Bioinformatics. 16, 707-726.
    • (2000) Bioinformatics. , vol.16 , pp. 707-726
    • D’Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 22
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams, H.H. and Arkin, A. (1997). Stochastic mechanisms in gene expression. Proc Natl Acad Sci U.S.A. 4, 94, 814-9.
    • (1997) Proc Natl Acad Sci U.S.A. , vol.4 , Issue.94 , pp. 814-819
    • McAdams, H.H.1    Arkin, A.2
  • 23
    • 25444468618 scopus 로고    scopus 로고
    • Noise in Gene Expression: Origins, Consequences, and Control
    • Raser, J.M. and O’Shea, E.K. (2005). Noise in Gene Expression: Origins, Consequences, and Control. Science. 309, 2010-2013.
    • (2005) Science. , vol.309 , pp. 2010-2013
    • Raser, J.M.1    O’Shea, E.K.2
  • 24
    • 32644431906 scopus 로고    scopus 로고
    • Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
    • Lähdesmäki, H., Hautaniemi, S., Shmulevitch, I. and Yliy-Haria, O. (2006). Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Processing. 86, 814-834.
    • (2006) Signal Processing. , vol.86 , pp. 814-834
    • Lähdesmäki, H.1    Hautaniemi, S.2    Shmulevitch, I.3    Yliy-Haria, O.4
  • 25
    • 0043130707 scopus 로고    scopus 로고
    • Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations
    • de Hoon, M.J.L., Seiya Imoto, S., Kobayashi, K., Ogasawara, N., and Miyano, S. (2003). Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations. Pacific Symposium on Biocomputing. 2003, 17-28.
    • (2003) Pacific Symposium on Biocomputing. , vol.2003 , pp. 17-28
    • De Hoon, M.J.L.1    Seiya Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 31
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal M.B., Falciani, F., Ghahramani, Z., Rangel, C. and Wild, D. (2005). A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics. 21, 349-356.
    • (2005) Bioinformatics. , vol.21 , pp. 349-356
    • Beal, M.B.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.5
  • 32
    • 85115927794 scopus 로고    scopus 로고
    • Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim, S., Imoto, S. and Miyano S. (2003). Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Proc. of CMSB. 2003, 104-113.
    • (2003) Proc. of CMSB. , vol.2003 , pp. 104-113
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 33
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage {lambda}-Infected Escherichia coli cells
    • Arkin, A., Ross, J. and McAdams, H.H. (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage {lambda}-Infected Escherichia coli cells. Genetics. 149, 1633-1648.
    • (1998) Genetics. , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 34
    • 0344844806 scopus 로고    scopus 로고
    • Local identifiability: When can genetic networks be inferred from microarray data?
    • December 12-14, Stockholm, Sweden Karolinska Institute
    • Zak, D., Doyle, F. and Schwaber, J. (2002). Local identifiability: when can genetic networks be inferred from microarray data? Proceedings of the Third International Conference on Systems Biology, December 12-14, Stockholm, Sweden Karolinska Institute. 236-237.
    • (2002) Proceedings of the Third International Conference on Systems Biology , pp. 236-237
    • Zak, D.1    Doyle, F.2    Schwaber, J.3
  • 35
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman, I., Regev, A. and Friedman, N. (2004). Inferring quantitative models of regulatory networks from expression data. Bioinformatics. 20, 248-256.
    • (2004) Bioinformatics. , vol.20 , pp. 248-256
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 38
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • Friedman, N. (2004). Inferring Cellular Networks Using Probabilistic Graphical Models. Science. 303, 799-805.
    • (2004) Science. , vol.303 , pp. 799-805
    • Friedman, N.1
  • 39
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 40
    • 15944361900 scopus 로고    scopus 로고
    • Informative Structure Priors: Joint Learning of Dynamic Regulatory Networks from Multiple Types of Data
    • Altman, R., Dunker, A.K., Hunter, L., Jung, T. and Klein, T., eds. World Scientific: New Jersey
    • Bernard, A. and Hartemink, A. (2005). Informative Structure Priors: Joint Learning of Dynamic Regulatory Networks from Multiple Types of Data. Pacific Symposium on Biocomputing 2005 (PSB’05), Altman, R., Dunker, A.K., Hunter, L., Jung, T. and Klein, T., eds. World Scientific: New Jersey. 459-470.
    • (2005) Pacific Symposium on Biocomputing 2005 (PSB’05) , pp. 459-470
    • Bernard, A.1    Hartemink, A.2
  • 46
    • 84898940253 scopus 로고    scopus 로고
    • From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data”
    • E. Mjolsness, T. Mann, R. Castaño, and B. Wold, Solla, S., Leen, T. K., Mueller, K.-R. (eds)
    • Mjolsness, E., Mann, T., Castaño, R. and Wold, B. (2000). From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data”, E. Mjolsness, T. Mann, R. Castaño, and B. Wold. Advances in Neural Information Processing Systems 12, Solla, S., Leen, T. K., Mueller, K.-R. (eds). 928-936.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 928-936
    • Mjolsness, E.1    Mann, T.2    Castaño, R.3    Wold, B.4
  • 49
    • 10244255213 scopus 로고    scopus 로고
    • Biologically valid linear factor models of gene expression
    • Girolami, M. and Breitling, R. (2004). Biologically valid linear factor models of gene expression. Bioinformatics. 20, 3021-3033.
    • (2004) Bioinformatics. , vol.20 , pp. 3021-3033
    • Girolami, M.1    Breitling, R.2
  • 50
    • 33646338193 scopus 로고    scopus 로고
    • Minreg: A Scalable Algorithm for Learning Parsimonious Regulatory networks in Yeast and Mammals
    • Pe’er, D., Regev, A. and Tanay, A. (2006). Minreg: A Scalable Algorithm for Learning Parsimonious Regulatory networks in Yeast and Mammals, Journal of Machine Learning Research. 7, 167-189.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 167-189
    • Pe’er, D.1    Regev, A.2    Tanay, A.3
  • 51
    • 12344259602 scopus 로고    scopus 로고
    • Advances to bayesian network inference for generating causal networks from observational biological data
    • Yu, J., Smith, V., Wang, P., Hartemink, A. and Jarvis, E. (2004). Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics. 20, 3594-3603.
    • (2004) Bioinformatics. , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.