메뉴 건너뛰기




Volumn , Issue , 2006, Pages 569-574

Elucidating the structure of genetic regulatory networks: A study of a second order dynamical model on artificial data

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; NEURAL NETWORKS; STATE SPACE METHODS;

EID: 85069778578     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (5)
  • 1
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • P. D'haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-expression clustering to reverse engineering. BioInformatics, 16(8):707-726, 2000.
    • (2000) BioInformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 2
    • 84958595689 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • S. Kim, S. Imoto, and S. Miyano. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. In Proc. of CMSB 2003, pages 104-113, 2003.
    • (2003) Proc. Of CMSB 2003 , pp. 104-113
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 3
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • A. Regev I. Nachman and N. Friedman. Inferring quantitative models of regulatory networks from expression data. Bioinformatics, Vol. 20 Suppl. 1:i248-i256, 2004.
    • (2004) Bioinformatics , vol.20 , pp. i248-i256
    • Regev, A.1    Friedman, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.