메뉴 건너뛰기




Volumn 34, Issue 13-14, 2013, Pages 1653-1670

Trends in biohydrogen production: Major challenges and state-of-the-art developments

Author keywords

algae; biohydrogen; biophotolysis; cyanobacteria; dark fermentation; photo fermentation

Indexed keywords

ALGAE; ALTERNATIVE FUELS; BACTERIA; BIOLOGICAL WATER TREATMENT; CELL IMMOBILIZATION; GENETIC ENGINEERING; PHOTOBIOLOGICAL HYDROGEN PRODUCTION; SOLAR ENERGY;

EID: 84885986510     PISSN: 09593330     EISSN: 1479487X     Source Type: Journal    
DOI: 10.1080/09593330.2013.822022     Document Type: Article
Times cited : (94)

References (176)
  • 1
    • 0343462148 scopus 로고    scopus 로고
    • Hydrogen production by biological processes: A survey of literature
    • Das D, Veziroglu TN. Hydrogen production by biological processes: A survey of literature. Int J Hydrog Energy. 2001;26:13-28
    • (2001) Int J Hydrog Energy , vol.26 , pp. 13-28
    • Das, D.1    Veziroglu, T.N.2
  • 2
    • 0036629128 scopus 로고    scopus 로고
    • The origin of ideas on a hydrogen economy and its solution to the decay of the environment
    • Bockris JO. The origin of ideas on a hydrogen economy and its solution to the decay of the environment. Int J Hydrog Energy. 2002;27:731-740
    • (2002) Int J Hydrog Energy , vol.27 , pp. 731-740
    • Bockris, J.O.1
  • 3
    • 30944443553 scopus 로고    scopus 로고
    • Bio-hydrogen production from waste materials
    • Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38:569-582
    • (2006) Enzyme Microb Technol , vol.38 , pp. 569-582
    • Kapdan, I.K.1    Kargi, F.2
  • 4
    • 84869022976 scopus 로고    scopus 로고
    • Fossil fuel prices, exchange rate, and stock market: A dynamic causality analysis on the European market
    • Smiech S, Papiez M. Fossil fuel prices, exchange rate, and stock market: A dynamic causality analysis on the European market. Econ Lett. 2013;118:199-202
    • (2013) Econ Lett , vol.118 , pp. 199-202
    • Smiech, S.1    Papiez, M.2
  • 5
    • 84875660446 scopus 로고    scopus 로고
    • Biofuel-related price transmission literature: A review
    • Serra T, Zilberman D. Biofuel-related price transmission literature: A review. Energy Econ. 2013;13:141-151
    • (2013) Energy Econ , vol.13 , pp. 141-151
    • Serra, T.1    Zilberman, D.2
  • 6
    • 84875219847 scopus 로고    scopus 로고
    • Advanced biofuels: Future perspectives from an expert elicitation survey
    • Fiorese G, Catenacci M, Verdolini E, Bosetti V. Advanced biofuels: Future perspectives from an expert elicitation survey. Energy Policy. 2013;56:293-311
    • (2013) Energy Policy , vol.56 , pp. 293-311
    • Fiorese, G.1    Catenacci, M.2    Verdolini, E.3    Bosetti, V.4
  • 7
    • 33746655320 scopus 로고    scopus 로고
    • Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
    • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103:11206-11210
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 11206-11210
    • Hill, J.1    Nelson, E.2    Tilman, D.3    Polasky, S.4    Tiffany, D.5
  • 8
    • 67650076482 scopus 로고    scopus 로고
    • Agroethanol an environmental friendly fuel
    • Sanhueza E. Agroethanol an environmental friendly fuel. Interciencia. 2009;35:106-112
    • (2009) Interciencia , vol.35 , pp. 106-112
    • Sanhueza, E.1
  • 10
    • 78149409697 scopus 로고    scopus 로고
    • Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review
    • Damartzis T, Zabaniotou A. Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review. Renew Sustain Energy Rev. 2011;15:366-378
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 366-378
    • Damartzis, T.1    Zabaniotou, A.2
  • 11
    • 77955619699 scopus 로고    scopus 로고
    • An outlook on microalgal biofuels
    • Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010;329:796-799
    • (2010) Science , vol.329 , pp. 796-799
    • Wijffels, R.H.1    Barbosa, M.J.2
  • 12
    • 79957480018 scopus 로고    scopus 로고
    • Renewable hydrogen generation by bimetallic zero valent iron nanoparticles
    • Chen K-F, Li S, Zhang W-x. Renewable hydrogen generation by bimetallic zero valent iron nanoparticles. Chem Eng J. 2011;170:562-567
    • (2011) Chem Eng J. , vol.170 , pp. 562-567
    • Chen, K.-F.1    Li, S.2    Zhang, W.-X.3
  • 13
    • 84881556167 scopus 로고    scopus 로고
    • From first to third generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity
    • Lee RA, Lavoie JM. From first to third generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim Front. 2013;3:6-11
    • (2013) Anim Front , vol.3 , pp. 6-11
    • Lee, R.A.1    Lavoie, J.M.2
  • 15
    • 0344896607 scopus 로고    scopus 로고
    • Biohydrogen production: Prospects and limitations to practical application
    • Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Int J Hydrog Energy. 2004;29:173-185
    • (2004) Int J Hydrog Energy , vol.29 , pp. 173-185
    • Levin, D.B.1    Pitt, L.2    Love, M.3
  • 16
    • 0242678278 scopus 로고    scopus 로고
    • The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production
    • Oh SE, Ginkel SV, Logan BE. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol. 2003;37:5186-5190
    • (2003) Environ Sci Technol , vol.37 , pp. 5186-5190
    • Oh, S.E.1    Ginkel, S.V.2    Logan, B.E.3
  • 17
    • 0344033688 scopus 로고    scopus 로고
    • Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora
    • Lin CY, Lay CH. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrog Energy. 2004;29: 275-281
    • (2004) Int J Hydrog Energy , vol.29 , pp. 275-281
    • Lin, C.Y.1    Lay, C.H.2
  • 18
    • 80051688002 scopus 로고    scopus 로고
    • Photobiological hydrogen production: Recent advances and state of the art
    • Eroglu E, Melis A. Photobiological hydrogen production: Recent advances and state of the art. Bioresour Technol. 2011;102:8403-13
    • (2011) Bioresour Technol , vol.102 , pp. 8403-8413
    • Eroglu, E.1    Melis, A.2
  • 19
    • 84865510247 scopus 로고    scopus 로고
    • Combination of dark-And photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite
    • Cheng J, Xia A, Liu Y, Lin R, Zhou J, Cen K. Combination of dark-And photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. Int J Hydrog Energy. 2012;37:13330-13337
    • (2012) Int J Hydrog Energy , vol.37 , pp. 13330-13337
    • Cheng, J.1    Xia, A.2    Liu, Y.3    Lin, R.4    Zhou, J.5    Cen, K.6
  • 20
    • 84866680961 scopus 로고    scopus 로고
    • The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions
    • Tittle D, Qu J. The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions. Transp Res Part D: Transp Environ. 2013;18:25-30
    • (2013) Transp Res Part D: Transp Environ , vol.18 , pp. 25-30
    • Tittle, D.1    Qu, J.2
  • 21
    • 0038957868 scopus 로고    scopus 로고
    • The multiple roles for catalysis in the production of H2
    • Armor JN. The multiple roles for catalysis in the production of H2. Appl Catal A: Gen. 1999;176:159-176
    • (1999) Appl Catal A: Gen , vol.176 , pp. 159-176
    • Armor, J.N.1
  • 22
    • 84555173931 scopus 로고    scopus 로고
    • June 2012. London, UK Available from
    • BP statistical review of world energy June 2012. London, UK; 2012. p. 1-48. Available from: Www.bp.com/ statisticalreview
    • (2012) Bp Statistical Review Of World Energy , pp. 1-48
  • 23
    • 11344254687 scopus 로고    scopus 로고
    • From hydrocarbon to hydrogencarbon to hydrogen economy
    • Muradov NZ, Veziroglu TN. From hydrocarbon to hydrogencarbon to hydrogen economy. Int J Hydrog Energy. 2005;30:225-237
    • (2005) Int J Hydrog Energy , vol.30 , pp. 225-237
    • Muradov, N.Z.1    Veziroglu, T.N.2
  • 24
    • 84885966399 scopus 로고    scopus 로고
    • Comparisons and limitations of biohydrogen production processes: A review
    • Pandu K, Joseph S. Comparisons and limitations of biohydrogen production processes: A review. Int J Adv Eng Technol. 2012;2:342-356
    • (2012) Int J Adv Eng Technol , vol.2 , pp. 342-356
    • Pandu, K.1    Joseph, S.2
  • 25
    • 68349158947 scopus 로고    scopus 로고
    • Metabolic pathway engineering for enhanced biohydrogen production
    • Mathews J, Wang G. Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy. 2009;34:7404-7416
    • (2009) Int J Hydrog Energy , vol.34 , pp. 7404-7416
    • Mathews, J.1    Wang, G.2
  • 26
    • 0036827191 scopus 로고    scopus 로고
    • Biological hydrogen production; fundamentals and limiting processes
    • Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy. 2002;27:1185-1193
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1185-1193
    • Hallenbeck, P.C.1    Benemann, J.R.2
  • 28
    • 0036489148 scopus 로고    scopus 로고
    • Hydrogen futures: Toward a sustainable energy system
    • Dunn S. Hydrogen futures: Toward a sustainable energy system. Int J Hydrog Energy. 2002;27:235-264
    • (2002) Int J Hydrog Energy , vol.27 , pp. 235-264
    • Dunn, S.1
  • 29
    • 0002193812 scopus 로고    scopus 로고
    • Microbial production of hydrogen-An overview
    • Nandi R, Sengupta S. Microbial production of hydrogen-An overview. Crit Rev Microbiol. 1998;24:61-84
    • (1998) Crit Rev Microbiol , vol.24 , pp. 61-84
    • Nandi, R.1    Sengupta, S.2
  • 31
    • 16344373934 scopus 로고    scopus 로고
    • The photobiological production of hydrogen: Potential efficiency and effectiveness as a renewable fuel
    • Prince RC, Kheshgi HS. The photobiological production of hydrogen: Potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol. 2005;31:19-31
    • (2005) Crit Rev Microbiol , vol.31 , pp. 19-31
    • Prince, R.C.1    Kheshgi, H.S.2
  • 32
    • 70449612704 scopus 로고    scopus 로고
    • Biophotolysis-based hydrogen production by cyanobacteria and green microalgae
    • In: Mendes-Vilas A, editor, Microbiology Series No. 1. Badajoz, Spain: Formatex
    • Yu J, Takahashi P. Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Mendes-Vilas A, editor. Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Vol. 1, Microbiology Series No. 1. Badajoz, Spain: Formatex; 2007. p. 79-89
    • (2007) Communicating Current Research and Educational Topics and Trends in Applied Microbiology , vol.1 , pp. 79-89
    • Yu, J.1    Takahashi, P.2
  • 33
    • 0000642932 scopus 로고    scopus 로고
    • The fossil record: Tracing the roots of the cyanobacterial lineage
    • In:.Whitton BA Potts M, editors Dordrecht, The Netherlands Kluwer Academic Publishers
    • Schopf JW. The fossil record: Tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M, editors. The ecology of cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000. p. 13-35
    • (2000) The Ecology Of Cyanobacteria , pp. 13-35
    • Schopf, J.W.1
  • 34
    • 0035197070 scopus 로고    scopus 로고
    • Hydrogen production Green algae as a source of energy
    • Melis A, Happe T. Hydrogen production. Green algae as a source of energy. Plant Physiol. 2001;127:740-748
    • (2001) Plant Physiol , vol.127 , pp. 740-748
    • Melis, A.1    Happe, T.2
  • 35
    • 0036827174 scopus 로고    scopus 로고
    • Green alga hydrogen production: Progress, challenges and prospects
    • Melis A. Green alga hydrogen production: Progress, challenges and prospects. Int J Hydrog Energy. 2002;27: 1217-1228
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1217-1228
    • Melis, A.1
  • 37
    • 0001314242 scopus 로고    scopus 로고
    • Feasibility analysis of photobiological hydrogen production
    • Benemann JR. Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy. 1997;22: 979-987
    • (1997) Int J Hydrog Energy , vol.22 , pp. 979-987
    • Benemann, J.R.1
  • 39
    • 84855661453 scopus 로고    scopus 로고
    • HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. Strain PCC 7120
    • Lindberg P, Devine E, Stensjo K, Lindblad P. HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol. 2012;78:273-276
    • (2012) Appl Environ Microbiol , vol.78 , pp. 273-276
    • Lindberg, P.1    Devine, E.2    Stensjo, K.3    Lindblad, P.4
  • 40
    • 0019509252 scopus 로고
    • Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. Strain 7120
    • Houchins JP, Burris RH. Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120. J Bacteriol. 1981;146: 209-214
    • (1981) J Bacteriol , vol.146 , pp. 209-214
    • Houchins, J.P.1    Burris, R.H.2
  • 41
    • 79960588023 scopus 로고    scopus 로고
    • The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production
    • McIntosh CL. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc. 2011;133: 11308-11319
    • (2011) J Am Chem Soc , vol.133 , pp. 11308-11319
    • McIntosh, C.L.1
  • 43
    • 77951976891 scopus 로고    scopus 로고
    • Biological hydrogen production: Prospects and challenges
    • Lee HS, Vermaas WF, Rittmann BE. Biological hydrogen production: Prospects and challenges. Trends Biotechnol. 2010;28:262-271
    • (2010) Trends Biotechnol , vol.28 , pp. 262-271
    • Lee, H.S.1    Vermaas, W.F.2    Rittmann, B.E.3
  • 44
    • 0036827173 scopus 로고    scopus 로고
    • Photobiological hydrogen production: Photochemical efficiency and bioreactor design
    • Akkerman I, Janssen M, Rocha J, Hijffels RH. Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int J Hydrog Energy. 2002;27:1195-1208
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1195-1208
    • Akkerman, I.1    Janssen, M.2    Rocha, J.3    Hijffels, R.H.4
  • 45
    • 33846213610 scopus 로고    scopus 로고
    • The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art
    • Basak N, Das D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J Microbiol Biotechnol. 2007;33:31-42
    • (2007) World J Microbiol Biotechnol , vol.33 , pp. 31-42
    • Basak, N.1    Das, D.2
  • 46
    • 65949114885 scopus 로고    scopus 로고
    • Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study
    • Basak N, Das D. Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study. Biomass Bioenergy. 2009;33:911-919
    • (2009) Biomass Bioenergy , vol.33 , pp. 911-919
    • Basak, N.1    Das, D.2
  • 47
    • 33748551648 scopus 로고    scopus 로고
    • Effect of gas sparging on continuous fermentative hydrogen production
    • Kim DH, Han SK, Kim SH, Shin HS. Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy. 2006;31:2155-2169
    • (2006) Int J Hydrog Energy , vol.31 , pp. 2155-2169
    • Kim, D.H.1    Han, S.K.2    Kim, S.H.3    Shin, H.S.4
  • 48
    • 33746913440 scopus 로고    scopus 로고
    • Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment
    • Kondo T, Wakayama T, Miyake J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrog Energy. 2006;31:1522-1526
    • (2006) Int J Hydrog Energy , vol.31 , pp. 1522-1526
    • Kondo, T.1    Wakayama, T.2    Miyake, J.3
  • 49
    • 0035892791 scopus 로고    scopus 로고
    • Biohydrogen production as a function of pH and substrate concentration
    • Van Ginkel S, Sung S, Lay JJ. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol. 2001;35:4726-4730
    • (2001) Environ Sci Technol , vol.35 , pp. 4726-4730
    • Van Ginkel, S.1    Sung, S.2    Lay, J.J.3
  • 51
    • 78651460327 scopus 로고    scopus 로고
    • Biohydrogen production from biomass and wastes via dark fermentation: A review
    • Ntaikou I, Antonopoulou G, Lyberatos G. Biohydrogen production from biomass and wastes via dark fermentation: A review. Waste Biomass Valorization. 2010;1:21-39
    • (2010) Waste Biomass Valorization , vol.1 , pp. 21-39
    • Ntaikou, I.1    Antonopoulou, G.2    Lyberatos, G.3
  • 52
    • 79956281139 scopus 로고    scopus 로고
    • Fermentative hydrogen production: Influence of application of mesophilic and thermophilic bacteria on mass and energy balances
    • Foglia D,WukovitsW, Friedl A, Vrije TD, Claassen PAM. Fermentative hydrogen production: Influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chem Eng Trans. 2011;25:815-820
    • (2011) Chem Eng Trans , vol.25 , pp. 815-820
    • Foglia, D.1    Wukovits, W.2    Friedl, A.3    Vrije, T.D.4    Claassen, P.A.M.5
  • 54
    • 78049486717 scopus 로고    scopus 로고
    • Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation
    • Cakir A, Ozmihci S, Kargi F. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. Int J Hydrog Energy. 2010;35:13214-13218
    • (2010) Int J Hydrog Energy , vol.35 , pp. 13214-13218
    • Cakir, A.1    Ozmihci, S.2    Kargi, F.3
  • 56
    • 38349159666 scopus 로고    scopus 로고
    • Comparison of biohydrogen production processes
    • Manish S, Banerjee R. Comparison of biohydrogen production processes. Int J Hydrog Energy. 2008;33:279-286
    • (2008) Int J Hydrog Energy , vol.33 , pp. 279-286
    • Manish, S.1    Banerjee, R.2
  • 58
    • 79957622629 scopus 로고    scopus 로고
    • Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview
    • Argun H, Kargi F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int J Hydrog Energy. 2011;36:7443-7459
    • (2011) Int J Hydrog Energy , vol.36 , pp. 7443-7459
    • Argun, H.1    Kargi, F.2
  • 59
    • 0002527327 scopus 로고    scopus 로고
    • Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria
    • In Miyake J, Matsunaga T, San Pietro A, editors. Oxford, UK Elsevier
    • Masukawa H, Nakamura K, Mochimaru M, Sakurai H. Photobiological hydrogen production and nitrogenase activity in some heterocystous cyanobacteria. In Miyake J, Matsunaga T, San Pietro A, editors. Biohydrogen II. Oxford, UK: Elsevier. 2001. p. 63-66
    • (2001) Biohydrogen II , pp. 63-66
    • Masukawa, H.1    Nakamura, K.2    Mochimaru, M.3    Sakurai, H.4
  • 60
    • 0031056356 scopus 로고    scopus 로고
    • Hydrogen metabolism of Anabaena variabilis in continuous cultures and under nutritional stress
    • Sveshnikov DA, Sveshnikov NV, Rao KK, Hall DO. Hydrogen metabolism of Anabaena variabilis in continuous cultures and under nutritional stress. FEBS Lett. 1997;147:297-301
    • (1997) FEBS Lett , vol.147 , pp. 297-301
    • Sveshnikov, D.A.1    Sveshnikov, N.V.2    Rao, K.K.3    Hall, D.O.4
  • 61
    • 6944228870 scopus 로고    scopus 로고
    • Improvement of fermentative hydrogen production: Various approaches
    • Nath K, Das D. Improvement of fermentative hydrogen production: Various approaches. Appl Microbiol Biotechnol. 2004;65:520-529
    • (2004) Appl Microbiol Biotechnol , vol.65 , pp. 520-529
    • Nath, K.1    Das, D.2
  • 62
    • 0036827176 scopus 로고    scopus 로고
    • Truncated chlorophyll antenna size of the photosystems-A practical method to improve microalgal productivity and hydrogen production in mass culture
    • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A. Truncated chlorophyll antenna size of the photosystems-A practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrog Energy. 2002;27:1257-1264
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1257-1264
    • Polle, J.E.W.1    Kanakagiri, S.2    Jin, E.3    Masuda, T.4    Melis, A.5
  • 65
    • 41549096266 scopus 로고    scopus 로고
    • Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures
    • Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol. 2008;134:275-277
    • (2008) J Biotechnol , vol.134 , pp. 275-277
    • Laurinavichene, T.V.1    Kosourov, S.N.2    Ghirardi, M.L.3    Seibert, M.4    Tsygankov, A.A.5
  • 66
    • 0038078280 scopus 로고    scopus 로고
    • A new oxygen sensitivity and its potential application in photosyntheticH2 production
    • Lee JW, Greenbaum E. A new oxygen sensitivity and its potential application in photosyntheticH2 production. Appl Biochem Biotechnol. 2003;106:303-313
    • (2003) Appl Biochem Biotechnol , vol.106 , pp. 303-313
    • Lee, J.W.1    Greenbaum, E.2
  • 67
    • 7544221776 scopus 로고    scopus 로고
    • Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor
    • Lee K-S, Lo Y-S, Lo Y-C, Lin P-J, Chang J-S. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol. 2004;35:605-612
    • (2004) Enzyme Microb Technol , vol.35 , pp. 605-612
    • Lee, K.-S.1    Lo, Y.-S.2    Lo, Y.-C.3    Lin, P.-J.4    Chang, J.-S.5
  • 70
    • 0036618091 scopus 로고    scopus 로고
    • Hydrogenases in green algae: Do they save the algae's life and solve our energy problems?
    • Happe T, Hemschemeier A, Winkler M, Kaminski A. Hydrogenases in green algae: Do they save the algae's life and solve our energy problems? Trends Plant Sci. 2002;7:246-250
    • (2002) Trends Plant Sci , vol.7 , pp. 246-250
    • Happe, T.1    Hemschemeier, A.2    Winkler, M.3    Kaminski, A.4
  • 71
    • 0033967946 scopus 로고    scopus 로고
    • Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942
    • Asada Y, Koike Y, Schnackenberg J, Miyake M, Uemura I, Miyake J. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophy Acta. 2000;1490:269-278
    • (2000) Biochim Biophy Acta , vol.1490 , pp. 269-278
    • Asada, Y.1    Koike, Y.2    Schnackenberg, J.3    Miyake, M.4    Uemura, I.5    Miyake, J.6
  • 72
    • 79957540476 scopus 로고    scopus 로고
    • Heterologous expression of alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus
    • doi:10.1371/journal.pone.0020126
    • Weyman PD, Vargas WA, Tong Y, Yu J, Maness P-C, Smith HO, Xu Q. Heterologous expression of alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS ONE. 2011;6: E 20126. doi:10.1371/journal.pone.0020126
    • (2011) PLoS ONE , vol.6
    • Weyman, P.D.1    Vargas, W.A.2    Tong, Y.3    Yu, J.4    Maness, P.-C.5    Smith, H.O.6    Xu, Q.7
  • 74
    • 0036215515 scopus 로고    scopus 로고
    • Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp PCC 7120
    • Masukawa H, Mochimaru M, Sakurai H. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol. 2002;58:618-624
    • (2002) Appl Microbiol Biotechnol , vol.58 , pp. 618-624
    • Masukawa, H.1    Mochimaru, M.2    Sakurai, H.3
  • 75
    • 0030703713 scopus 로고    scopus 로고
    • Direct electroporation of clostridial hydrogenase into cyanobacterial cells
    • Miyake M, Asada Y. Direct electroporation of clostridial hydrogenase into cyanobacterial cells. Biotechnol Tech. 1997;11:787-790
    • (1997) Biotechnol Tech , vol.11 , pp. 787-790
    • Miyake, M.1    Asada, Y.2
  • 76
    • 57949103374 scopus 로고    scopus 로고
    • Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica solgel
    • Dickson D, Page C, Ely R. Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica solgel. Int J Hydrog Energy. 2009;34:204-215
    • (2009) Int J Hydrog Energy , vol.34 , pp. 204-215
    • Dickson, D.1    Page, C.2    Ely, R.3
  • 77
    • 84876494682 scopus 로고    scopus 로고
    • Bioconversion characteristics of Rhodopseudomonas palustris CQK 01 entrapped in a photobioreactor for hydrogen production
    • Wang Y-Z, Liao Q, Zhu X, Chen R, Guo C-L, Zhou J. Bioconversion characteristics of Rhodopseudomonas palustris CQK 01 entrapped in a photobioreactor for hydrogen production. Bioresour Technol. 2013;135: 331-338
    • (2013) Bioresour Technol , vol.135 , pp. 331-338
    • Wang, Y.-Z.1    Liao, Q.2    Zhu, X.3    Chen, R.4    Guo, C.-L.5    Zhou, J.6
  • 78
    • 0036827171 scopus 로고    scopus 로고
    • Biohydrogen production with fixed-bed bioreactors
    • Chang JS, Lee KS, Lin PJ. Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy. 2002;27: 1167-1174
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1167-1174
    • Chang, J.S.1    Lee, K.S.2    Lin, P.J.3
  • 79
    • 0036836416 scopus 로고    scopus 로고
    • Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range
    • Van Groenestijn JW, Hazewinkel JHO, NienoordM, Bussmann PJT. Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrog Energy. 2002:27; 1141-1147
    • (2002) Int J Hydrog Energy , vol.27 , pp. 1141-1147
    • Van Groenestijn, J.W.1    Hazewinkel, J.H.O.2    Nienoord, M.3    Bussmann, P.J.T.4
  • 80
    • 0037265673 scopus 로고    scopus 로고
    • Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge
    • Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng. 2003;95:271-275
    • (2003) J Biosci Bioeng , vol.95 , pp. 271-275
    • Kim, J.1    Park, C.2    Kim, T.H.3    Lee, M.4    Kim, S.5    Kim, S.W.6    Lee, J.7
  • 82
    • 34248671389 scopus 로고    scopus 로고
    • Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia
    • Mohan SV, Vijaya Bhaskar Y, Sarma PN. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res. 2007;41:2652-2664
    • (2007) Water Res , vol.41 , pp. 2652-2664
    • Mohan, S.V.1    Vijaya Bhaskar, Y.2    Sarma, P.N.3
  • 83
    • 0036138487 scopus 로고    scopus 로고
    • Effect of pH on hydrogen production from glucose by a mixed culture
    • Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol. 2002;82:87-93
    • (2002) Bioresour Technol , vol.82 , pp. 87-93
    • Fang, H.H.P.1    Liu, H.2
  • 85
    • 33746900961 scopus 로고    scopus 로고
    • Dark hydrogen fermentation
    • Reith JH, Wijffels RH, Barten H, ediors. Hague: Dutch Biological Hydrogen Foundation
    • De Vrije T, Claasen PAM. Dark hydrogen fermentation. In: Reith JH, Wijffels RH, Barten H, ediors. Bio-methane and Bio-hydrogen. Hague: Dutch Biological Hydrogen Foundation; 2003. p. 103-123
    • (2003) Bio-Methane And Bio-Hydrogen , pp. 103-123
    • De Vrije, T.1    Claasen, P.A.M.2
  • 86
    • 33847232283 scopus 로고    scopus 로고
    • Operation of a two-stage fermentation process producing hydrogen and methane from organic waste
    • Ueno Y, Fukui H, Goto M. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol. 2007;41:1413-1419
    • (2007) Environ Sci Technol , vol.41 , pp. 1413-1419
    • Ueno, Y.1    Fukui, H.2    Goto, M.3
  • 87
    • 0041828377 scopus 로고    scopus 로고
    • Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19
    • Oh YK, Seol EH, Kim JR, Park S. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy. 2003;28: 1353-1359
    • (2003) Int J Hydrog Energy , vol.28 , pp. 1353-1359
    • Oh, Y.K.1    Seol, E.H.2    Kim, J.R.3    Park, S.4
  • 88
    • 0036466566 scopus 로고    scopus 로고
    • Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes
    • Fabiano B, Perego P. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrog Energy. 2002;27:149-156
    • (2002) Int J Hydrog Energy , vol.27 , pp. 149-156
    • Fabiano, B.1    Perego, P.2
  • 89
    • 0035050509 scopus 로고    scopus 로고
    • Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae
    • Kumar N, Ghosh A, Das D. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol Lett. 2001;23: 537-541
    • (2001) Biotechnol Lett , vol.23 , pp. 537-541
    • Kumar, N.1    Ghosh, A.2    Das, D.3
  • 90
    • 0030967563 scopus 로고    scopus 로고
    • Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes
    • Mahyudin AR, Furutani Y, Nakashimada Y, Kakizono T, Nishio N. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng. 1997;83:358-363
    • (1997) J Ferment Bioeng , vol.83 , pp. 358-363
    • Mahyudin, A.R.1    Furutani, Y.2    Nakashimada, Y.3    Kakizono, T.4    Nishio, N.5
  • 91
    • 0033030375 scopus 로고    scopus 로고
    • Feasibility of biological hydrogen production from organic fraction of municipal solid waste
    • Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 1999;33:2579-2586
    • (1999) Water Res , vol.33 , pp. 2579-2586
    • Lay, J.J.1    Lee, Y.J.2    Noike, T.3
  • 92
    • 84864417903 scopus 로고    scopus 로고
    • Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up
    • Oncel S, Sabankay M. Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresour Technol. 2012;121: 228-234
    • (2012) Bioresour Technol , vol.121 , pp. 228-234
    • Oncel, S.1    Sabankay, M.2
  • 93
    • 84866053751 scopus 로고    scopus 로고
    • Innovative CO2 pretreatment for enhancing biohydrogen production from the organic fraction of municipal solid waste (OFMSW
    • Bru K, Blazy V, Joulian C, Trably E, Latrille E, Quéméneur M, Dictor M-C. Innovative CO2 pretreatment for enhancing biohydrogen production from the organic fraction of municipal solid waste (OFMSW). Int J Hydrog Energy. 2012;37:14062-14071
    • (2012) Int J Hydrog Energy , vol.37 , pp. 14062-14071
    • Bru, K.1    Blazy, V.2    Joulian, C.3    Trably, E.4    Latrille, E.5    Quéméneur, M.6    Dictor, M.-C.7
  • 95
    • 31344479544 scopus 로고    scopus 로고
    • Ethanol fermentation from biomass resources: Current state and prospects
    • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol. 2006;69:627-642
    • (2006) Appl Microbiol Biotechnol , vol.69 , pp. 627-642
    • Lin, Y.1    Tanaka, S.2
  • 97
    • 76749100206 scopus 로고    scopus 로고
    • Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium
    • Geng A, He Y, Qian C, Yan X, Zhou Z. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour Technol. 2010;101:4029-4033
    • (2010) Bioresour Technol , vol.101 , pp. 4029-4033
    • Geng, A.1    He, Y.2    Qian, C.3    Yan, X.4    Zhou, Z.5
  • 98
    • 83055180184 scopus 로고    scopus 로고
    • Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deletedmutant from acetate and butyrate
    • Kim M-S, Kim D-H, Son H-N, Ten LN, Lee JK. Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deletedmutant from acetate and butyrate. Int J Hydrog Energy. 2011;36:13964-13971
    • (2011) Int J Hydrog Energy , vol.36 , pp. 13964-13971
    • Kim, M.-S.1    Kim, D.-H.2    Son, H.-N.3    Ten, L.N.4    Lee, J.K.5
  • 99
    • 84873198060 scopus 로고    scopus 로고
    • Impact of regulated pH on proto scale hydrogen production from xylose by an alkaline tolerant novel bacterial strain, Enterobacter cloacae DT-1
    • Subudhi S, Nayak T, Ram Kumar N, Vijayananth P, Lal B. Impact of regulated pH on proto scale hydrogen production from xylose by an alkaline tolerant novel bacterial strain, Enterobacter cloacae DT-1. Int J Hydrog Energy. 2013;38:2728-2737
    • (2013) Int J Hydrog Energy , vol.38 , pp. 2728-2737
    • Subudhi, S.1    Nayak, T.2    Ram Kumar, N.3    Vijayananth, P.4    Lal, B.5
  • 100
    • 79960170117 scopus 로고    scopus 로고
    • Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum
    • Cappelletti BM, ReginattoV, Amante ER, AntônioRV. Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy. 2011;36:3367-3372
    • (2011) Renew Energy , vol.36 , pp. 3367-3372
    • Cappelletti, B.M.1    Reginatto, V.2    Amante, E.R.3    Antônio, R.V.4
  • 101
    • 84865526145 scopus 로고    scopus 로고
    • Biohydrogen production using corn stalk employing Bacillus licheniformis MSU AGM 2 strain
    • Amutha KB, Murugesan AG. Biohydrogen production using corn stalk employing Bacillus licheniformis MSU AGM 2 strain. Renew Energy. 2013;50:621-627
    • (2013) Renew Energy , vol.50 , pp. 621-627
    • Amutha, K.B.1    Murugesan, A.G.2
  • 102
    • 55049115238 scopus 로고    scopus 로고
    • Advances in biological hydrogen production processes
    • Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrog Energy. 2008;33: 6046-6057
    • (2008) Int J Hydrog Energy , vol.33 , pp. 6046-6057
    • Das, D.1    Veziroglu, T.N.2
  • 104
    • 80051680145 scopus 로고    scopus 로고
    • Bioreactor and process design for biohydrogen production
    • Show KY, Lee DJ, Chang JS. Bioreactor and process design for biohydrogen production. Bioresour Technol. 2011;102:8524-8533
    • (2011) Bioresour Technol , vol.102 , pp. 8524-8533
    • Show, K.Y.1    Lee, D.J.2    Chang, J.S.3
  • 106
    • 33750997299 scopus 로고    scopus 로고
    • Biohydrogen production from molasses by anaerobic fermentation with a pilotscale bioreactor system
    • Ren N, Li J, Li B, Wang Y, Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilotscale bioreactor system. Int J Hydrog Energy. 2006;31: 2147-2157
    • (2006) Int J Hydrog Energy , vol.31 , pp. 2147-2157
    • Ren, N.1    Li, J.2    Li, B.3    Wang, Y.4    Liu, S.5
  • 107
    • 79961127896 scopus 로고    scopus 로고
    • Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359
    • Ngo TA, Nguyen TH, Bui HTV. Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renew Energy. 2012;37: 174-179
    • (2012) Renew Energy , vol.37 , pp. 174-179
    • Ngo, T.A.1    Nguyen, T.H.2    Bui, H.T.V.3
  • 108
    • 84867711293 scopus 로고    scopus 로고
    • Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor
    • Tawfik A, Salem A, El-Qelish M, Fahmi AA, Moustafa ME. Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor. Renew Energy. 2013;50:402-407
    • (2013) Renew Energy , vol.50 , pp. 402-407
    • Tawfik, A.1    Salem, A.2    El-Qelish, M.3    Fahmi, A.A.4    Moustafa, M.E.5
  • 109
    • 84869864582 scopus 로고    scopus 로고
    • Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw
    • Panagiotopoulos IA, Bakker RR, deVrijeT, Claassen PAM, Koukios EG. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw. Bioresour Technol. 2013;128:345-350
    • (2013) Bioresour Technol , vol.128 , pp. 345-350
    • Panagiotopoulos, I.A.1    Bakker, R.R.2    De Vrije, T.3    Claassen, P.A.M.4    Koukios, E.G.5
  • 110
    • 84872423692 scopus 로고    scopus 로고
    • Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids
    • Zhou P, Elbeshbishy E, Nakhla G. Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresour Technol. 2013;130:710-718
    • (2013) Bioresour Technol , vol.130 , pp. 710-718
    • Zhou, P.1    Elbeshbishy, E.2    Nakhla, G.3
  • 111
    • 84874115526 scopus 로고    scopus 로고
    • Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent
    • Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHAb, Sakinah M. Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. Int J Hydrog Energy. 2013;38:2221-2229
    • (2013) Int J Hydrog Energy , vol.38 , pp. 2221-2229
    • Singh, L.1    Wahid, Z.A.2    Siddiqui, M.F.3    Ahmad, A.4    Rahim, M.H.A.B.5    Sakinah, M.6
  • 112
    • 84871978968 scopus 로고    scopus 로고
    • Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure
    • Wang K-S, Chen J-H, Huang Y-H, Huang S-L. Integrated Taguchi method and response surface methodology to confirm hydrogen production by anaerobic fermentation of cow manure. Int J Hydrog Energy. 2013;38:45-53
    • (2013) Int J Hydrog Energy , vol.38 , pp. 45-53
    • Wang, K.-S.1    Chen, J.-H.2    Huang, Y.-H.3    Huang, S.-L.4
  • 113
    • 84866448027 scopus 로고    scopus 로고
    • Hydrogen production by Rhodopseudomonas palustris CQK 01 in a continuous photobioreactor with ultrasonic treatment
    • Wang Y-Z, Xie X-W, Zhu X, Liao Q, Chen R, Zhao X, Lee D-J. Hydrogen production by Rhodopseudomonas palustris CQK 01 in a continuous photobioreactor with ultrasonic treatment. Int J Hydrog Energy. 2012;37:15450-15457
    • (2012) Int J Hydrog Energy , vol.37 , pp. 15450-15457
    • Wang, Y.-Z.1    Xie, X.-W.2    Zhu, X.3    Liao, Q.4    Chen, R.5    Zhao, X.6    Lee, D.-J.7
  • 114
    • 64749098287 scopus 로고    scopus 로고
    • Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy
    • Redwood MD, Paterson-Beedle M, Macaskie LE. Integrating dark and light bio-hydrogen production strategies: Towards the hydrogen economy. Rev Environ Sci Biotechnol. 2009;8:149-185
    • (2009) Rev Environ Sci Biotechnol , vol.8 , pp. 149-185
    • Redwood, M.D.1    Paterson-Beedle, M.2    Macaskie, L.E.3
  • 117
  • 118
    • 64449086664 scopus 로고    scopus 로고
    • Biohydrogen production from biomass and industrial wastes by dark fermentation
    • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy. 2009;34:3277-3287
    • (2009) Int J Hydrog Energy , vol.34 , pp. 3277-3287
    • Chong, M.-L.1    Sabaratnam, V.2    Shirai, Y.3    Hassan, M.A.4
  • 119
    • 84858720805 scopus 로고    scopus 로고
    • A review on utilisation of biomass from rice industry as a source of renewable energy
    • Lim JS, Abdul MZ, Wan Alwi SR, Hashim H. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sustain Energy Rev. 2012;16: 3084-3094
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3084-3094
    • Lim, J.S.1    Abdul, M.Z.2    Wan Alwi, S.R.3    Hashim, H.4
  • 120
    • 84855824027 scopus 로고    scopus 로고
    • Storage and separation of hydrogen with the metal steam process
    • Thaler M, Hacker V. Storage and separation of hydrogen with the metal steam process. Int J Hydrog Energy. 2012;37:2800-2806
    • (2012) Int J Hydrog Energy , vol.37 , pp. 2800-2806
    • Thaler, M.1    Hacker, V.2
  • 122
    • 84855858243 scopus 로고    scopus 로고
    • Ahydrogen purification and storage system using metal hydride
    • Miura S, Fujisawa A, Ishida M.Ahydrogen purification and storage system using metal hydride. Int J Hydrog Energy. 2012;37:2794-2799
    • (2012) Int J Hydrog Energy , vol.37 , pp. 2794-2799
    • Miura, S.1    Fujisawa, A.2    Ishida, M.3
  • 123
    • 36549000827 scopus 로고    scopus 로고
    • Purification process for chemical storage of hydrogen for fuel cell vehicles applications
    • Swesi Y, Ronze D, Pitault I, Dittmeyer R, Heurtaux F. Purification process for chemical storage of hydrogen for fuel cell vehicles applications. Int J Hydrog Energy. 2007;32:5059-5066
    • (2007) Int J Hydrog Energy , vol.32 , pp. 5059-5066
    • Swesi, Y.1    Ronze, D.2    Pitault, I.3    Dittmeyer, R.4    Heurtaux, F.5
  • 124
    • 0037538337 scopus 로고    scopus 로고
    • Hydrogen storage material based on LaNi sub 5 alloy produced by mechanical alloying
    • Simicic MV, Zdujic M, Jelovac DM, and Mrakin P. Hydrogen storage material based on LaNi sub 5 alloy produced by mechanical alloying. J Power Sources. 2001;92: 250-254
    • (2001) J Power Sources , vol.92 , pp. 250-254
    • Simicic, M.V.1    Zdujic, M.2    Jelovac, D.M.3    Mrakin, P.4
  • 125
    • 0035013043 scopus 로고    scopus 로고
    • Materials for rechargeable batteries and clean hydrogen energy sources
    • Wronski ZS. Materials for rechargeable batteries and clean hydrogen energy sources. Int Mater Rev. 2001;46:1-49
    • (2001) Int Mater Rev , vol.46 , pp. 1-49
    • Wronski, Z.S.1
  • 126
    • 77953891258 scopus 로고    scopus 로고
    • Large-scale biohydrogen production from bio-oil
    • Sarkar S, Kumar A. Large-scale biohydrogen production from bio-oil. Bioresour Technol. 2010;101:7350-7361
    • (2010) Bioresour Technol , vol.101 , pp. 7350-7361
    • Sarkar, S.1    Kumar, A.2
  • 127
    • 80052377468 scopus 로고    scopus 로고
    • Development of net energy ratio and emission factor for biohydrogen production pathways
    • Kabir MR, Kumar A. Development of net energy ratio and emission factor for biohydrogen production pathways. Bioresour Technol. 2011;102:8972-8985
    • (2011) Bioresour Technol , vol.102 , pp. 8972-8985
    • Kabir, M.R.1    Kumar, A.2
  • 128
    • 84877340684 scopus 로고    scopus 로고
    • Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming
    • Zhang Y, Brown TR, Hu G, Brown RC. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming. Biomass Bioenergy. 2013;51:99-108
    • (2013) Biomass Bioenergy , vol.51 , pp. 99-108
    • Zhang, Y.1    Brown, T.R.2    Hu, G.3    Brown, R.C.4
  • 129
    • 31944437818 scopus 로고    scopus 로고
    • Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells
    • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA. Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrog Energy. 2006;31: 659-667
    • (2006) Int J Hydrog Energy , vol.31 , pp. 659-667
    • Laurinavichene, T.V.1    Fedorov, A.S.2    Ghirardi, M.L.3    Seibert, M.4    Tsygankov, A.A.5
  • 130
    • 80051689514 scopus 로고    scopus 로고
    • Biohydrogen production by immobilized Chlorella sp. Using cycles of oxygenic photosynthesis and anaerobiosis
    • Song W, Rashid N, Choi W, Lee K. Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol. 2011;102:8676-8681
    • (2011) Bioresour Technol , vol.102 , pp. 8676-8681
    • Song, W.1    Rashid, N.2    Choi, W.3    Lee, K.4
  • 131
    • 77957333228 scopus 로고    scopus 로고
    • Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment
    • Amutha KB, Murugesan AG. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol. 2011;102:194-199
    • (2011) Bioresour Technol , vol.102 , pp. 194-199
    • Amutha, K.B.1    Murugesan, A.G.2
  • 132
    • 2342495268 scopus 로고    scopus 로고
    • Two stage photo-production of hydrogen by marine green algae Platymonas subcordiforrnis
    • Guan YF, Deng MC, Yu XJ, Zhang W. Two stage photo-production of hydrogen by marine green algae Platymonas subcordiforrnis. Biochem Eng J. 2004;19: 69-73
    • (2004) Biochem Eng J. , vol.19 , pp. 69-73
    • Guan, Y.F.1    Deng, M.C.2    Yu, X.J.3    Zhang, W.4
  • 133
    • 84655162780 scopus 로고    scopus 로고
    • Biological hydrogen production by Anabaena sp.-yield, energy and CO2 analysis including fermentative biomass recovery
    • Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, Silva CM. Biological hydrogen production by Anabaena sp.-yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy. 2012;37:179-190
    • (2012) Int J Hydrog Energy , vol.37 , pp. 179-190
    • Ferreira, A.F.1    Marques, A.C.2    Batista, A.P.3    Marques, P.A.S.S.4    Gouveia, L.5    Silva, C.M.6
  • 134
    • 84867629221 scopus 로고    scopus 로고
    • Enhancing biological hydrogen production from cyanobacteria by removal of excreted products
    • Ananyev GM, Skizim NJ, Dismukes GC. Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. J Biotechnol. 2012;162: 97-104
    • (2012) J Biotechnol , vol.162 , pp. 97-104
    • Ananyev, G.M.1    Skizim, N.J.2    Dismukes, G.C.3
  • 135
    • 12344288213 scopus 로고    scopus 로고
    • Production of H2 by sulphurdeprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH
    • Antal TK, Lindblad P. Production of H2 by sulphurdeprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol. 2005;98:114-120
    • (2005) J Appl Microbiol , vol.98 , pp. 114-120
    • Antal, T.K.1    Lindblad, P.2
  • 136
    • 77952889281 scopus 로고    scopus 로고
    • Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum
    • Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol. 2010;162:208-220
    • (2010) Appl Biochem Biotechnol , vol.162 , pp. 208-220
    • Huesemann, M.H.1    Hausmann, T.S.2    Carter, B.M.3    Gerschler, J.J.4    Benemann, J.R.5
  • 137
    • 38849141133 scopus 로고    scopus 로고
    • Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum
    • Younesi H, Najafpour G, Ismail KSK, Mohamed AR, Kamaruddin AH. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresour Technol. 2008;99:2612-2619
    • (2008) Bioresour Technol , vol.99 , pp. 2612-2619
    • Younesi, H.1    Najafpour, G.2    Ismail, K.S.K.3    Mohamed, A.R.4    Kamaruddin, A.H.5
  • 139
    • 77956171325 scopus 로고    scopus 로고
    • EnhancedH2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentation
    • Wu XB, LiQY, Dieudonne M, Cong YB, Zhou J, Long MN. EnhancedH2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentation. Bioresour Technol. 2010;101:9605-9611
    • (2010) Bioresour Technol , vol.101 , pp. 9605-9611
    • Wu, X.B.1    Li, Q.Y.2    Dieudonne, M.3    Cong, Y.B.4    Zhou, J.5    Long, M.N.6
  • 140
    • 77953914779 scopus 로고    scopus 로고
    • Application of rice rhizosphere microflora for hydrogen production from apple pomace
    • Doi T, Matsumoto H, Abe J, Morita S. Application of rice rhizosphere microflora for hydrogen production from apple pomace. Int J Hydrog Energy. 2010;35:7369-7376
    • (2010) Int J Hydrog Energy , vol.35 , pp. 7369-7376
    • Doi, T.1    Matsumoto, H.2    Abe, J.3    Morita, S.4
  • 141
    • 51349112793 scopus 로고    scopus 로고
    • Biohydrogen production using sequential two-stage dark and photo fermentation processes
    • Chen C-Y, Yang M-H, Yeh K-L, Liu C-H, Chang J-S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy. 2008;31:4755-4762
    • (2008) Int J Hydrog Energy , vol.31 , pp. 4755-4762
    • Chen, C.-Y.1    Yang, M.-H.2    Yeh, K.-L.3    Liu, C.-H.4    Chang, J.-S.5
  • 143
    • 84886050813 scopus 로고    scopus 로고
    • In Technische Chemie I, WS2009. Available from
    • Heinzle E. Introduction to ideal reactors. In Technische Chemie I, WS2009.Available from: Http://www.scribd.com/ doc/119645599/HE2-Reactor-Design- Batch-Contin-Text
    • Introduction To Ideal Reactors
    • Heinzle, E.1
  • 144
    • 77957284888 scopus 로고    scopus 로고
    • Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation
    • Lay C-H, Wu J-H, Hsiao C-L, Chang J-J, Chen C-C, Lin C-Y. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation. Int J Hydrog Energy. 2010;35:13445-13451
    • (2010) Int J Hydrog Energy , vol.35 , pp. 13445-13451
    • Lay, C.-H.1    Wu, J.-H.2    Hsiao, C.-L.3    Chang, J.-J.4    Chen, C.-C.5    Lin, C.-Y.6
  • 145
    • 72649100791 scopus 로고    scopus 로고
    • Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucosepeptone and starch-peptone
    • Li SL, Whang LM, Chao YC, Wang YH, Wang YF, Hsiao CJ, Tseng IC, Bai MD, Cheng SS. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucosepeptone and starch-peptone. Int J Hydrog Energy. 2010;35: 61-70
    • (2010) Int J Hydrog Energy , vol.35 , pp. 61-70
    • Li, S.L.1    Whang, L.M.2    Chao, Y.C.3    Wang, Y.H.4    Wang, Y.F.5    Hsiao, C.J.6    Tseng, I.C.7    Bai, M.D.8    Cheng, S.S.9
  • 146
    • 0037653608 scopus 로고    scopus 로고
    • Using sucrose as substrate in an anaerobic hydrogen producing reactor
    • Chen CC, Lin CY. Using sucrose as substrate in an anaerobic hydrogen producing reactor. Adv Environ Res. 2003;7: 695-699
    • (2003) Adv Environ Res , vol.7 , pp. 695-699
    • Chen, C.C.1    Lin, C.Y.2
  • 148
    • 78049475824 scopus 로고    scopus 로고
    • Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor
    • Jung K-W, Kim D-H, Shin H-S. Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy. 2010;35:13370-13378
    • (2010) Int J Hydrog Energy , vol.35 , pp. 13370-13378
    • Jung, K.-W.1    Kim, D.-H.2    Shin, H.-S.3
  • 149
    • 0035323038 scopus 로고    scopus 로고
    • Upflow anaerobic sludge blanket reactor-A review
    • Bal AS, Dhagat NN. Upflow anaerobic sludge blanket reactor-A review. Indian J Environ Health. 2001;43:1-82
    • (2001) Indian J Environ Health , vol.43 , pp. 1-82
    • Bal, A.S.1    Dhagat, N.N.2
  • 150
    • 67349084047 scopus 로고    scopus 로고
    • Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules
    • Akutsu Y, Lee D-Y, Chi Y-Z, Li Y-Y, Harada H, Yu HQ. Thermophilic fermentative hydrogen production from starch-wastewater with bio-granules. Int J Hydrog Energy. 2009;34:5061-5071
    • (2009) Int J Hydrog Energy , vol.34 , pp. 5061-5071
    • Akutsu, Y.1    Lee, D.-Y.2    Chi, Y.-Z.3    Li, Y.-Y.4    Harada, H.5    Yu, H.Q.6
  • 151
    • 0344550384 scopus 로고    scopus 로고
    • Biohydrogen production using an upflow anaerobic sludge blanket reactor
    • Chang FY, Lin CY. Biohydrogen production using an upflow anaerobic sludge blanket reactor. Int J Hydrog Energy. 2004;29:33-39
    • (2004) Int J Hydrog Energy , vol.29 , pp. 33-39
    • Chang, F.Y.1    Lin, C.Y.2
  • 153
    • 84859631403 scopus 로고    scopus 로고
    • Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent
    • Boran E, Ozgur E,Yucel M, Gunduz U, Eroglu I. Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. J Cleaner Prod. 2012;31:150-157
    • (2012) J Cleaner Prod , vol.31 , pp. 150-157
    • Boran, E.1    Ozgur, E.2    Yucel, M.3    Gunduz, U.4    Eroglu, I.5
  • 155
    • 38849122708 scopus 로고    scopus 로고
    • Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor
    • Eroglu I. Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrog Energy. 2008;33:531-541
    • (2008) Int J Hydrog Energy , vol.33 , pp. 531-541
    • Eroglu, I.1
  • 156
    • 7644227378 scopus 로고    scopus 로고
    • Review of developments in portable hydrogen production using microreactor technology
    • Holladay JD, Wang Y, Jones E. Review of developments in portable hydrogen production using microreactor technology. Chem Rev. 2004;104:4767-4790
    • (2004) Chem Rev , vol.104 , pp. 4767-4790
    • Holladay, J.D.1    Wang, Y.2    Jones, E.3
  • 157
    • 78049404494 scopus 로고    scopus 로고
    • Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus
    • Gebicki J, Modigell M, Schumacher M, Van der Burg J, Roebroeck E. Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus. J Cleaner Prod. 2010;18:536-542
    • (2010) J Cleaner Prod , vol.18 , pp. 536-542
    • Gebicki, J.1    Modigell, M.2    Schumacher, M.3    Van Der Burg, J.4    Roebroeck, E.5
  • 158
    • 76749106926 scopus 로고    scopus 로고
    • Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilizedcell photobioreactor
    • Wang YZ, Liao Q, Zhu X, Tian X, Zhang C. Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilizedcell photobioreactor. Bioresour Technol. 2010;101:4034-4041
    • (2010) Bioresour Technol , vol.101 , pp. 4034-4041
    • Wang, Y.Z.1    Liao, Q.2    Zhu, X.3    Tian, X.4    Zhang, C.5
  • 159
    • 0344867845 scopus 로고    scopus 로고
    • Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae
    • Miron AS, Gomez AC, Camacho FG, Grima EM, Chisiti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol. 1999;70:249-270
    • (1999) J Biotechnol , vol.70 , pp. 249-270
    • Miron, A.S.1    Gomez, A.C.2    Camacho, F.G.3    Grima, E.M.4    Chisiti, Y.5
  • 161
    • 0037272707 scopus 로고    scopus 로고
    • H2 production with anaerobic sludge using activated-carbon supported packedbed bioreactors
    • Lee KS, Logan YS, Lo YC, Lin PJ, Chang JS.H2 production with anaerobic sludge using activated-carbon supported packedbed bioreactors. Biotechnol Lett. 2003;25:133-138
    • (2003) Biotechnol Lett , vol.25 , pp. 133-138
    • Lee, K.S.1    Logan, Y.S.2    Lo, Y.C.3    Lin, P.J.4    Chang, J.S.5
  • 164
    • 32244440365 scopus 로고    scopus 로고
    • Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21
    • Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem. 2006;41:682-688
    • (2006) Process Biochem , vol.41 , pp. 682-688
    • Chittibabu, G.1    Nath, K.2    Das, D.3
  • 165
    • 83055193945 scopus 로고    scopus 로고
    • Optimization of photo-hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53
    • Liu B-F. Optimization of photo-hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53. Natural Resour. 2011;2:1-7
    • (2011) Natural Resour , vol.2 , pp. 1-7
    • Liu, B.-F.1
  • 167
    • 79952744660 scopus 로고    scopus 로고
    • Rewiring hydrogenasedependent redox circuits in cyanobacteria
    • Ducat DC, Sachdeva G, Silver Pa. Rewiring hydrogenasedependent redox circuits in cyanobacteria. Proc Natl Acad Sci USA. 2011;108:3941-3946
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 3941-3946
    • Ducat, D.C.1    Sachdeva, G.2    Silver, P.A.3
  • 169
    • 79959329033 scopus 로고    scopus 로고
    • Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP + -oxidoreductase (FNR) enzymes in vitro
    • Yacoby I, Pochekailov S, Topotrik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP + -oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA. 2011;108:9396-9401
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 9396-9401
    • Yacoby, I.1    Pochekailov, S.2    Topotrik, H.3    Ghirardi, M.L.4    King, P.W.5    Zhang, S.6
  • 170
    • 77955176908 scopus 로고    scopus 로고
    • Hydrogen production from glycerol using halophilic fermentative bacteria
    • Kivisto A, Santala V, Karp M. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol. 2010;101:8671-8677
    • (2010) Bioresour Technol , vol.101 , pp. 8671-8677
    • Kivisto, A.1    Santala, V.2    Karp, M.3
  • 171
    • 67650740864 scopus 로고    scopus 로고
    • Fermentative hydrogen production: Principles, progress, and prognosis
    • Hallenbeck PC. Fermentative hydrogen production: Principles, progress, and prognosis. Int J Hydrog Energy. 2009;34:7379-7389
    • (2009) Int J Hydrog Energy , vol.34 , pp. 7379-7389
    • Hallenbeck, P.C.1
  • 172
    • 21244441201 scopus 로고    scopus 로고
    • Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 Is based on limited access of oxygen to the active site
    • Buhrke T, Lenz O, Krauss N, Friedrich B. Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 Is based on limited access of oxygen to the active site. J Biol Chem. 2005;280:23791-23796
    • (2005) J Biol Chem , vol.280 , pp. 23791-23796
    • Buhrke, T.1    Lenz, O.2    Krauss, N.3    Friedrich, B.4
  • 173
    • 30044450366 scopus 로고    scopus 로고
    • Development of a novel recombinant cyanobacterial system for hydrogen production from water
    • Rockville MD, Craig J, editors. Rockville, MD: J. Craig Venter Institute
    • Xu Q, Yooseph S, Smith HO, Venter CJ. Development of a novel recombinant cyanobacterial system for hydrogen production from water. In: Rockville MD, Craig J, editors. Genomics: GTL program projects. Rockville, MD: J. Craig Venter Institute; 2005. p. 64
    • (2005) Genomics: GTL program projects , pp. 64
    • Xu, Q.1    Yooseph, S.2    Smith, H.O.3    Venter, C.J.4
  • 174
    • 0018462889 scopus 로고
    • Isolation, purification and study of the stability of the soluble hydrogenase from Alcaligenes eutrophus Z-1
    • Pinchukova EE, Varfolomeev SD, Kondrateva EN. Isolation, purification and study of the stability of the soluble hydrogenase from Alcaligenes eutrophus Z-1. Biokhimiya. 1979;44:605-615
    • (1979) Biokhimiya , vol.44 , pp. 605-615
    • Pinchukova, E.E.1    Varfolomeev, S.D.2    Kondrateva, E.N.3
  • 175
    • 80051691329 scopus 로고    scopus 로고
    • Dark fermentation on biohydrogen production: Pure culture
    • Lee DJ, Show KY, Su A. Dark fermentation on biohydrogen production: Pure culture. Bioresour Technol. 2011;102:8393-402
    • (2011) Bioresour Technol , vol.102 , pp. 8393-8402
    • Lee, D.J.1    Show, K.Y.2    Su, A.3
  • 176
    • 84861008788 scopus 로고    scopus 로고
    • Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131
    • Kim M, Kim DH, Cha J, Lee JK. Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresour Technol. 2012;116:179-183
    • (2012) Bioresour Technol , vol.116 , pp. 179-183
    • Kim, M.1    Kim, D.H.2    Cha, J.3    Lee, J.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.