메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1393-1400

On-line random forests

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING APPLICATIONS; MACHINE-LEARNING; ON-LINE BOOSTING; ONLINE DECISIONS; PRACTICAL PROBLEMS; RANDOM FOREST ALGORITHM; RANDOM FORESTS; REAL-TIME SEGMENTATION; STATE-OF-THE-ART PERFORMANCE; TIME INTERVAL; TRAINING DATA; TREE GROWING; UNDERLYING DISTRIBUTION; VISUAL TRACKING; WEIGHTING SCHEME;

EID: 77953178544     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2009.5457447     Document Type: Conference Paper
Times cited : (494)

References (22)
  • 1
    • 33845596140 scopus 로고    scopus 로고
    • Robust fragments-based tracking using the integral histogram
    • A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In Proc. CVPR, 2006.
    • Proc. CVPR, 2006
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3
  • 2
    • 33748306005 scopus 로고    scopus 로고
    • Online adaptive decision trees: Pattern classification and function approximation
    • J. Basak. Online adaptive decision trees: Pattern classification and function approximation. Neural Comput., 18:2062-2101, 2004.
    • (2004) Neural Comput. , vol.18 , pp. 2062-2101
    • Basak, J.1
  • 3
    • 0032302833 scopus 로고    scopus 로고
    • Elliptical head tracking using intensity gradients and color histograms
    • S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. In Proc. CVPR, 1998.
    • Proc. CVPR, 1998
    • Birchfield, S.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • October
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, October 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 33845570001 scopus 로고    scopus 로고
    • On-line boosting and vision
    • H. Grabner and H. Bischof. On-line boosting and vision. In Proc. CVPR, volume 1, pages 260-267, 2006.
    • (2006) Proc. CVPR , vol.1 , pp. 260-267
    • Grabner, H.1    Bischof, H.2
  • 12
    • 0010369996 scopus 로고    scopus 로고
    • Competitive learning: From interactive activation to adaptive resonance
    • S. Grossberg. Competitive learning: From interactive activation to adaptive resonance. Neural networks and natural intelligence, pages 213-250, 1998.
    • (1998) Neural Networks and Natural Intelligence , pp. 213-250
    • Grossberg, S.1
  • 13
    • 24644494804 scopus 로고    scopus 로고
    • Randomized trees for realtime keypoint recognition
    • V. Lepetit, P. Lagger, and P. Fua. Randomized trees for realtime keypoint recognition. In Proc. CVPR, volume 2, pages 775-781, 2005.
    • (2005) Proc. CVPR , vol.2 , pp. 775-781
    • Lepetit, V.1    Lagger, P.2    Fua, P.3
  • 16
    • 10844255636 scopus 로고    scopus 로고
    • The evolving tree - A novel self-organizing network for data analysis
    • J. Pakkanen, J. Iivarinen, and E. Oja. The evolving tree - a novel self-organizing network for data analysis. Neural Process. Lett., 2004.
    • (2004) Neural Process. Lett.
    • Pakkanen, J.1    Iivarinen, J.2    Oja, E.3
  • 17
    • 33645084114 scopus 로고    scopus 로고
    • Adaptive proballistic visual tracking with incremental subspace update
    • D. Ross, J. Lim, and M. Yang. Adaptive proballistic visual tracking with incremental subspace update. In Proc. ECCV, volume 2, pages 470-482, 2004.
    • (2004) Proc. ECCV , vol.2 , pp. 470-482
    • Ross, D.1    Lim, J.2    Yang, M.3
  • 20
    • 56749102367 scopus 로고    scopus 로고
    • Implementing decision trees and forests on a gpu
    • T. Sharp. Implementing decision trees and forests on a gpu. In ECCV, pages 595-608, 2008.
    • (2008) ECCV , pp. 595-608
    • Sharp, T.1
  • 22
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • E. Utgoff, N. Bergman, and J. Clouse. Decision tree induction based on efficient tree restructuring. Machine Learning, 1997.
    • (1997) Machine Learning
    • Utgoff, E.1    Bergman, N.2    Clouse, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.