메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1879-1886

On-line semi-supervised multiple-instance boosting

Author keywords

[No Author keywords available]

Indexed keywords

COHERENT FRAMEWORKS; MULTIPLE-INSTANCE LEARNING; ON-LINE CLASSIFIER; ROBUST LEARNING; SELF-LEARNING; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SEMI-SUPERVISED METHOD; STATE-OF-THE-ART METHODS; UNLABELED SAMPLES;

EID: 77955991184     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539860     Document Type: Conference Paper
Times cited : (108)

References (21)
  • 1
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. PAMI, 29(2):261-271, 2007.
    • (2007) PAMI , vol.29 , Issue.2 , pp. 261-271
    • Avidan, S.1
  • 2
    • 70450188146 scopus 로고    scopus 로고
    • Visual Tracking with Online Multiple Instance Learning
    • B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009.
    • (2009) CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 3
    • 0036538619 scopus 로고    scopus 로고
    • Shape matching and object recognition using shape contexts
    • S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. PAMI, 24(4):509-522, 2002.
    • (2002) PAMI , vol.24 , Issue.4 , pp. 509-522
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 5
    • 0033682434 scopus 로고    scopus 로고
    • Real-time tracking of non-rigid objects using mean shift
    • D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In CVPR, volume 2, pages 142-149, 2000.
    • (2000) CVPR , vol.2 , pp. 142-149
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 6
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: A gradient boosting machine. The annals of statistics, pages 1189-1232, 2001.
    • (2001) The Annals of Statistics , pp. 1189-1232
    • Friedman, J.1
  • 7
    • 77956003494 scopus 로고    scopus 로고
    • Online manifold regularization: A new learning setting and empirical study
    • A. Goldberg, M. Li, and X. Zhu. Online manifold regularization: A new learning setting and empirical study. In ECCV, 2008.
    • (2008) ECCV
    • Goldberg, A.1    Li, M.2    Zhu, X.3
  • 8
    • 33845570001 scopus 로고    scopus 로고
    • On-line boosting and vision
    • H. Grabner and H. Bischof. On-line boosting and vision. In CVPR, volume 1, pages 260-267, 2006.
    • (2006) CVPR , vol.1 , pp. 260-267
    • Grabner, H.1    Bischof, H.2
  • 9
    • 84898020313 scopus 로고    scopus 로고
    • Real-time tracking via on-line boosting
    • H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In BMVC, 2006.
    • (2006) BMVC
    • Grabner, H.1    Grabner, M.2    Bischof, H.3
  • 10
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008.
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 11
    • 77955996601 scopus 로고    scopus 로고
    • On robustness of on-line boosting - A competitive study
    • C. Leistner, A. Saffari, P. Roth, and H. Bischof. On robustness of on-line boosting - a competitive study. In OLCV, 2009.
    • (2009) OLCV
    • Leistner, C.1    Saffari, A.2    Roth, P.3    Bischof, H.4
  • 12
    • 34948825409 scopus 로고    scopus 로고
    • Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans
    • Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Li, Y.1    Ai, H.2    Yamashita, T.3    Lao, S.4    Kawade, M.5
  • 13
    • 70450178422 scopus 로고    scopus 로고
    • Multiple instance feature for robust part-based object detection
    • Z. Lin, G. Hua, and L. Davis. Multiple instance feature for robust part-based object detection. In CVPR, 2009.
    • (2009) CVPR
    • Lin, Z.1    Hua, G.2    Davis, L.3
  • 14
    • 3042619859 scopus 로고    scopus 로고
    • The template update problem
    • I. Matthews, T. Ishikawa, and S. Baker. The template update problem. PAMI, pages 810-815, 2004.
    • (2004) PAMI , pp. 810-815
    • Matthews, I.1    Ishikawa, T.2    Baker, S.3
  • 16
    • 34948862825 scopus 로고    scopus 로고
    • Fast keypoint recognition in ten lines of code
    • M. Özuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In CVPR, 2007.
    • (2007) CVPR
    • Özuysal, M.1    Fua, P.2    Lepetit, V.3
  • 17
    • 70450181937 scopus 로고    scopus 로고
    • Semi-supervised boosting via expectation regularization
    • A. Saffari, H. Grabner, and H. Bischof. Semi-supervised boosting via expectation regularization. In ECCV, 2008.
    • (2008) ECCV
    • Saffari, A.1    Grabner, H.2    Bischof, H.3
  • 18
    • 0028112849 scopus 로고
    • Good features to track
    • J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
    • (1994) CVPR
    • Shi, J.1    Tomasi, C.2
  • 20
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • MIT Press
    • P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, volume 18, pages 1417-1424. MIT Press, 2006.
    • (2006) NIPS , vol.18 , pp. 1417-1424
    • Viola, P.1    Platt, J.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.