메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 2519-2548

Learning bilinear model for matching queries and documents

Author keywords

Generalization analysis; Partial least squares; Regularized mapping to latent structures; Web search

Indexed keywords

GENERALIZATION ANALYSIS; HETEROGENEOUS DOMAINS; HETEROGENEOUS OBJECT; LATENT STRUCTURES; MAPPING FUNCTIONS; PARALLELIZATIONS; PARTIAL LEAST SQUARE (PLS); WEB SEARCHES;

EID: 84885600994     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (28)

References (55)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Operator estimation with spectral regularization. JMLR '09, 10:803-826, 2009.
    • (2009) JMLR '09 , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.P.4
  • 2
    • 26944457342 scopus 로고    scopus 로고
    • Stability and generalization of bipartite ranking algorithms
    • S. Agarwal and P. Niyogi. Stability and generalization of bipartite ranking algorithms. In COLT'05, pages 32-47, 2005.
    • (2005) COLT'05 , pp. 32-47
    • Agarwal, S.1    Niyogi, P.2
  • 3
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS'08, pages 105-112, 2008.
    • (2008) NIPS'08 , pp. 105-112
    • Bach, F.1
  • 4
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML'04, 2004.
    • (2004) ICML'04
    • Bach, F.1    Lanckriet, G.2    Jordan, M.3
  • 7
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. JMLR'02, 3:463-482, 2002.
    • (2002) JMLR'02 , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 8
    • 34547972220 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. In NIPS'06, pages 395-402. 2006.
    • (2006) NIPS'06 , pp. 395-402
    • Burges, C.1    Ragno, R.2    Le, Q.3
  • 9
    • 33750338615 scopus 로고    scopus 로고
    • Adapting ranking svm to document retrieval
    • Y. Cao, J. Xu, T.Y. Liu, H. Li, Y. Huang, and H.W. Hon. Adapting ranking svm to document retrieval. In SIGIR '06, pages 186-193, 2006.
    • (2006) SIGIR ' , vol.6 , pp. 186-193
    • Cao, Y.1    Xu, J.2    Liu, T.Y.3    Li, H.4    Huang, Y.5    Hon, H.W.6
  • 10
    • 34547987951 scopus 로고    scopus 로고
    • Learning to rank: From pairwise approach to listwise approach
    • Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML '07, pages 129-136, 2007.
    • (2007) ICML ' , vol.7 , pp. 129-136
    • Cao, Z.1    Qin, T.2    Liu, T.Y.3    Tsai, M.F.4    Li, H.5
  • 11
    • 84873429648 scopus 로고    scopus 로고
    • Svdfeature: A toolkit for featurebased collaborative filtering
    • T.Q. Chen,W.N. Zhang, Q.X. Lu, K.L. Chen, Z. Zhao, and Y. Yu. Svdfeature: A toolkit for featurebased collaborative filtering. JMLR'12, 13, 2012.
    • JMLR'12 , vol.13 , pp. 2012
    • Chen, T.Q.1    Zhang, W.N.2    Lu, Q.X.3    Chen, K.L.4    Zhao, Z.5    Yu, Y.6
  • 12
    • 85162054015 scopus 로고    scopus 로고
    • Two-layer generalization analysis for ranking using rademacher average
    • W. Chen, T.Y. Liu, and Z. Ma. Two-layer generalization analysis for ranking using rademacher average. NIPS'10, 23:370-378, 2010.
    • (2010) NIPS'10 , vol.23 , pp. 370-378
    • Chen, W.1    Liu, T.Y.2    Ma, Z.3
  • 13
    • 77956548520 scopus 로고    scopus 로고
    • Invited talk: Can learning kernels help performance?
    • C. Cortes. Invited talk: Can learning kernels help performance? In ICML'09, page 161, 2009.
    • (2009) ICML'09 , pp. 161
    • Cortes, C.1
  • 14
    • 84898958855 scopus 로고    scopus 로고
    • Pranking with ranking
    • K. Crammer and Y. Singer. Pranking with ranking. In NIPS'01, pages 641-647, 2001.
    • (2001) NIPS'01 , pp. 641-647
    • Crammer, K.1    Singer, Y.2
  • 19
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist, 29(5): 1189-1232, 2001. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 20
    • 80052118865 scopus 로고    scopus 로고
    • Clickthrough-based latent semantic models for web search
    • J. Gao, K. Toutanova, and W. Yih. Clickthrough-based latent semantic models for web search. In SIGIR'11, pages 675-684, 2011.
    • (2011) SIGIR'11 , pp. 675-684
    • Gao, J.1    Toutanova, K.2    Yih, W.3
  • 21
    • 46149118255 scopus 로고    scopus 로고
    • A discriminative kernel-based model to rank images from text queries
    • D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries. IEEE Transactions on PAMI, 30(8):1371-1384, 2008.
    • (2008) IEEE Transactions on PAMI , vol.30 , Issue.8 , pp. 1371-1384
    • Grangier, D.1    Bengio, S.2
  • 22
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • DOI 10.1162/0899766042321814
    • D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004. (Pubitemid 39604012)
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 23
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. NIPS'99, pages 115-132, 1999.
    • (1999) NIPS'99 , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 24
    • 14344265725 scopus 로고    scopus 로고
    • Boosting margin based distance functions for clustering
    • page 50
    • T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance functions for clustering. In ICML'04, page 50, 2004.
    • (2004) ICML'04
    • Hertz, T.1    Bar-Hillel, A.2    Weinshall, D.3
  • 25
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22:89-115, 2004.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , pp. 89-115
    • Hofmann, T.1
  • 28
    • 0033645041 scopus 로고    scopus 로고
    • Ir evaluation methods for retrieving highly relevant documents
    • K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. In SIGIR'00, pages 41-48, 2000.
    • (2000) SIGIR'00 , pp. 41-48
    • Jarvelin, K.1    Kekalainen, J.2
  • 29
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In KDD '02, pages 133-142, 2002.
    • (2002) KDD ' , vol.2 , pp. 133-142
    • Joachims, T.1
  • 32
    • 84970915255 scopus 로고    scopus 로고
    • Learning to rank for information retrieval and natural language processing
    • H. Li. Learning to rank for information retrieval and natural language processing. Synthesis Lectures on Human Language Technologies, 4(1):1-113, 2011.
    • (2011) Synthesis Lectures on Human Language Technologies , vol.4 , Issue.1 , pp. 1-113
    • Li, H.1
  • 34
    • 67650067661 scopus 로고    scopus 로고
    • Learning latent semantic relations from clickthrough data for query suggestion
    • H. Ma, H.X. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough data for query suggestion. In CIKM'08, pages 709-718, 2008.
    • (2008) CIKM'08 , pp. 709-718
    • Ma, H.1    Yang, H.X.2    King, I.3    Lyu, M.R.4
  • 35
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • C. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR'05, 6:1099-1125, 2005.
    • (2005) JMLR'05 , vol.6 , pp. 1099-1125
    • Micchelli, C.1    Pontil, M.2
  • 36
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. JMLR '05, 6: 1043-1071, 2005.
    • (2005) JMLR '05 , vol.6 , pp. 1043-1071
    • Ong, C.S.1    Smola, A.J.2    Williamson, R.C.3
  • 37
    • 0032268440 scopus 로고    scopus 로고
    • A language modeling approach to information retrieval
    • J.M. Ponte and W.B. Croft. A language modeling approach to information retrieval. In SIGIR'98, pages 275-281, 1998.
    • (1998) SIGIR'98 , pp. 275-281
    • Ponte, J.M.1    Croft, W.B.2
  • 40
    • 26944478552 scopus 로고    scopus 로고
    • Margin-based ranking meets boosting in the middle
    • C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the middle. In COLT'05, pages 63-78, 2005.
    • (2005) COLT'05 , pp. 63-78
    • Rudin, C.1    Cortes, C.2    Mohri, M.3    Schapire, R.E.4
  • 42
    • 41849124224 scopus 로고    scopus 로고
    • A unifying discussion of correlation analysis for complex random vectors
    • DOI 10.1109/TSP.2007.909054
    • P.J. Schreier. A unifying discussion of correlation analysis for complex random vectors. Signal Processing, IEEE Transactions on, 56(4):1327-1336, 2008. (Pubitemid 351493830)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.4 , pp. 1327-1336
    • Schreier, P.J.1
  • 43
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. NIPS'03, 2003.
    • (2003) NIPS'03
    • Schultz, M.1    Joachims, T.2
  • 44
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. NIPS'05, pages 1329-1336, 2005.
    • (2005) NIPS'05 , pp. 1329-1336
    • Srebro, N.1    Rennie, J.D.M.2    Jaakkola, T.3
  • 45
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. JMLR'07, 8:1027-1061, 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 46
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient multiple kernel learning
    • page 134
    • M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML'09, page 134, 2009.
    • (2009) ICML'09
    • Varma, M.1    Babu, B.R.2
  • 48
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest neighbor classification. JMLR'09, 10:207-244, 2009.
    • (2009) JMLR'09 , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 49
    • 79960145806 scopus 로고    scopus 로고
    • Learning a robust relevance model for search using kernel methods
    • W. Wu, J. Xu, H. Li, and O. Satoshi. Learning a robust relevance model for search using kernel methods. JMLR'11, 12:1429-1458, 2011.
    • (2011) JMLR'11 , vol.12 , pp. 1429-1458
    • Wu, W.1    Xu, J.2    Li, H.3    Satoshi, O.4
  • 50
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. NIPS'03, pages 521-528, 2003.
    • (2003) NIPS'03 , pp. 521-528
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 52
    • 79960129929 scopus 로고    scopus 로고
    • Relevance ranking using kernels
    • J. Xu, H. Li, and Z.L. Zhong. Relevance ranking using kernels. In AIRS '10, 2010.
    • AIRS ' , vol.10 , pp. 2010
    • Xu, J.1    Li, H.2    Zhong, Z.L.3
  • 53
    • 33750707555 scopus 로고    scopus 로고
    • An efficient algorithm for local distance metric learning
    • page 543
    • L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric learning. In AAAI'06, page 543, 2006.
    • (2006) AAAI'06
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Liu, Y.4
  • 54
    • 84860633283 scopus 로고    scopus 로고
    • Sparse metric learning via smooth optimization
    • Y. Ying, K. Huang, and C. Campbell. Sparse Metric Learning via Smooth Optimization. NIPS'09, pages 521-528, 2009.
    • (2009) NIPS'09 , pp. 521-528
    • Ying, Y.1    Huang, K.2    Campbell, C.3
  • 55
    • 3042824043 scopus 로고    scopus 로고
    • A study of smoothing methods for language models applied to information retrieval
    • C.X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179-214, 2004.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.2 , pp. 179-214
    • Zhai, C.X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.