메뉴 건너뛰기




Volumn 9, Issue 8, 2013, Pages 7699-7708

Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering

Author keywords

Poly e caprolactone; Scaffold design; Surface modification; Three dimensional plotting; Tissue engineering

Indexed keywords

BIOMIMETICS; COATINGS; EFFICIENCY; PROTEINS; SCAFFOLDS (BIOLOGY); TISSUE;

EID: 84885448986     PISSN: 17427061     EISSN: 18787568     Source Type: Journal    
DOI: 10.1016/j.actbio.2013.05.003     Document Type: Article
Times cited : (60)

References (33)
  • 1
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 2
    • 58549094696 scopus 로고    scopus 로고
    • 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system
    • Park S, Kim G, Jeon YC, Koh Y, Kim W. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J Mater Sci Mater Med 2009;20:229-34.
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 229-234
    • Park, S.1    Kim, G.2    Jeon, Y.C.3    Koh, Y.4    Kim, W.5
  • 3
    • 79953891357 scopus 로고    scopus 로고
    • Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications
    • Seyednejad H, Gawlitta D, Dhert WJA, van Nostrum CF, Vermonden T, Hennink WE. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 2011;7:1999-2006.
    • (2011) Acta Biomater , vol.7 , pp. 1999-2006
    • Seyednejad, H.1    Gawlitta, D.2    Dhert, W.J.A.3    Van Nostrum, C.F.4    Vermonden, T.5    Hennink, W.E.6
  • 4
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40: 268-80.
    • (2008) Ann Med , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.W.2    Grijpma, D.W.3    Kellomäki, M.4
  • 5
    • 0036685718 scopus 로고    scopus 로고
    • Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
    • Landers R, Pfister A, Hübner U, John H, Schmelziesen R, Müllhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002;37:3107-16.
    • (2002) J Mater Sci , vol.37 , pp. 3107-3116
    • Landers, R.1    Pfister, A.2    Hübner, U.3    John, H.4    Schmelziesen, R.5    Müllhaupt, R.6
  • 6
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4: 518-24.
    • (2005) Nat Mater , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 8
    • 77957588918 scopus 로고    scopus 로고
    • The return of a forgotten polymerpolycaprolactone in the 21st century
    • Woodruff MA, Hutmacher DW. The return of a forgotten polymerpolycaprolactone in the 21st century. Prog Polym Sci 2010;35:1217-56.
    • (2010) Prog Polym Sci , vol.35 , pp. 1217-1256
    • Woodruff, M.A.1    Hutmacher, D.W.2
  • 9
    • 0345868851 scopus 로고    scopus 로고
    • Surface modification of ultra thin poly(epsiloncaprolactone) films using acrylic acid and collagen
    • Cheng ZY, Teoh SH. Surface modification of ultra thin poly(epsiloncaprolactone) films using acrylic acid and collagen. Biomaterials 2004;25: 1991-2001.
    • (2004) Biomaterials , vol.25 , pp. 1991-2001
    • Cheng, Z.Y.1    Teoh, S.H.2
  • 10
    • 79956196821 scopus 로고    scopus 로고
    • Fabrication of porous polycaprolactone/ hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    • Park SA, Hee LS, Kim WD. Fabrication of porous polycaprolactone/ hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess Biosyst Eng 2011;24:505-13.
    • (2011) Bioprocess Biosyst Eng , vol.24 , pp. 505-513
    • Park, S.A.1    Hee, L.S.2    Kim, W.D.3
  • 11
    • 79954426784 scopus 로고    scopus 로고
    • Three-dimensional plotted PCL/b-TCP scaffolds coated with a collagen layer: Preparation, physical properties and in vitro evaluation of bone tissue regeneration
    • Lee H, Kim G. Three-dimensional plotted PCL/b-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation of bone tissue regeneration. J Mater Chem 2011;21:6305-12.
    • (2011) J Mater Chem , vol.21 , pp. 6305-6312
    • Lee, H.1    Kim, G.2
  • 12
    • 67349264548 scopus 로고    scopus 로고
    • Nucleation and growth of biomimetic apatite layers on 3-D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions
    • Oliveira AL, Costa SA, Sousa SA, Reis RL. Nucleation and growth of biomimetic apatite layers on 3-D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions. Acta Biomater 2009;5:1626-38.
    • (2009) Acta Biomater , vol.5 , pp. 1626-1638
    • Oliveira, A.L.1    Costa, S.A.2    Sousa, S.A.3    Reis, R.L.4
  • 13
    • 33749995458 scopus 로고    scopus 로고
    • A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering
    • Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, et al. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int J Oral Maxillofac Surg 2006;35: 928-34.
    • (2006) Int J Oral Maxillofac Surg , vol.35 , pp. 928-934
    • Chim, H.1    Hutmacher, D.W.2    Chou, A.M.3    Oliveira, A.L.4    Reis, R.L.5    Lim, T.C.6
  • 14
    • 4444247465 scopus 로고    scopus 로고
    • Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications
    • Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials 2005;26:763-9.
    • (2005) Biomaterials , vol.26 , pp. 763-769
    • Tiaw, K.S.1    Goh, S.W.2    Hong, M.3    Wang, Z.4    Lan, B.5    Teoh, S.H.6
  • 15
    • 0031282238 scopus 로고    scopus 로고
    • Improved cell adhesion to ion beam-irradiated polymer surfaces
    • Pignataro B, Conte E, Scandurra A, Marletta G. Improved cell adhesion to ion beam-irradiated polymer surfaces. Biomaterials 1997;18:1461-70.
    • (1997) Biomaterials , vol.18 , pp. 1461-1470
    • Pignataro, B.1    Conte, E.2    Scandurra, A.3    Marletta, G.4
  • 16
    • 79952678759 scopus 로고    scopus 로고
    • Enhanced cellular functions on polycaprolactone tissue scaffolds by O2 plasma surface modification
    • Yildirim ED, Pappas D, Güçeri S, Sun W. Enhanced cellular functions on polycaprolactone tissue scaffolds by O2 plasma surface modification. Plasma Process Polym 2011;8:256-67.
    • (2011) Plasma Process Polym , vol.8 , pp. 256-267
    • Yildirim, E.D.1    Pappas, D.2    Güçeri, S.3    Sun, W.4
  • 17
  • 18
    • 78651351601 scopus 로고    scopus 로고
    • Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification
    • Yildirim ED, Besunder R, Pappas D, Allen F, Güçeri S, Sun W. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication 2010;2:1-12.
    • (2010) Biofabrication , vol.2 , pp. 1-12
    • Yildirim, E.D.1    Besunder, R.2    Pappas, D.3    Allen, F.4    Güçeri, S.5    Sun, W.6
  • 19
    • 67649854933 scopus 로고    scopus 로고
    • The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds
    • Zhang H, Lin CY, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009;30:4063-9.
    • (2009) Biomaterials , vol.30 , pp. 4063-4069
    • Zhang, H.1    Lin, C.Y.2    Hollister, S.J.3
  • 21
    • 79251617418 scopus 로고    scopus 로고
    • Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency
    • Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 2011;7: 1009-18.
    • (2011) Acta Biomater , vol.7 , pp. 1009-1018
    • Sobral, J.M.1    Caridade, S.G.2    Sousa, R.A.3    Mano, J.F.4    Reis, R.L.5
  • 22
    • 77949654400 scopus 로고    scopus 로고
    • The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells
    • Wang H, van Blitterswijk CA. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Biomaterials 2010;31:4322-9.
    • (2010) Biomaterials , vol.31 , pp. 4322-4329
    • Wang, H.1    Van Blitterswijk, C.A.2
  • 23
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006;27:974-85.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1    De Wijn, J.R.2    Van Blitterswijk, C.A.3
  • 24
    • 79951598449 scopus 로고    scopus 로고
    • Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, b-tricalcium phosphate, and collagen nanofibers: Fabrication, physical properties, and in vitro cell activity for bone tissue regeneration
    • Yeo M, Lee H, Kim G. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, b-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration. Biomacromolecules 2011;12:502-10.
    • (2011) Biomacromolecules , vol.12 , pp. 502-510
    • Yeo, M.1    Lee, H.2    Kim, G.3
  • 26
    • 78649864869 scopus 로고    scopus 로고
    • Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering
    • Desmet T, Billiet T, Berneel E, Cornelissen R, Schaubroeck D, Schacht E, et al. Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering. Macromol Biosci 2010;10:1484-94.
    • (2010) Macromol Biosci , vol.10 , pp. 1484-1494
    • Desmet, T.1    Billiet, T.2    Berneel, E.3    Cornelissen, R.4    Schaubroeck, D.5    Schacht, E.6
  • 27
    • 84863501247 scopus 로고    scopus 로고
    • Double protein functionalized poly-e-caprolactone surfaces: In depth ToF-SIMS and XPS characterization
    • Desmet T, Poleunis C, Delcorte A, Dubruel P. Double protein functionalized poly-e-caprolactone surfaces: in depth ToF-SIMS and XPS characterization. J Mater Sci Mater Med 2012;23:293-305.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 293-305
    • Desmet, T.1    Poleunis, C.2    Delcorte, A.3    Dubruel, P.4
  • 28
    • 84864933201 scopus 로고    scopus 로고
    • Radiolabeled gelatin type B analogues can be used for non-invasive visualisation and quantification of protein coatings on 3D porous implants
    • Kersemans K, Desmet T, Vanhove C, Dubruel P, De Vos F. Radiolabeled gelatin type B analogues can be used for non-invasive visualisation and quantification of protein coatings on 3D porous implants. J Mater Sci Mater Med 2012;23(8): 1961-9.
    • (2012) J Mater Sci Mater Med , vol.23 , Issue.8 , pp. 1961-1969
    • Kersemans, K.1    Desmet, T.2    Vanhove, C.3    Dubruel, P.4    De Vos, F.5
  • 30
    • 70349906286 scopus 로고    scopus 로고
    • Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses
    • Hoque E, San WY, Wei F, Li S, Huang M-H, Vert M, et al. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng A 2009;15:3013-24.
    • (2009) Tissue Eng A , vol.15 , pp. 3013-3024
    • Hoque, E.1    San, W.Y.2    Wei, F.3    Li, S.4    Huang, M.-H.5    Vert, M.6
  • 31
    • 84858862640 scopus 로고    scopus 로고
    • In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(e-caprolactone)
    • Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum GF, Vermonden T, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(e-caprolactone). Biomaterials 2012;33:4309-18.
    • (2012) Biomaterials , vol.33 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3    De Bruin, A.4    Van Nostrum, G.F.5    Vermonden, T.6
  • 32
    • 79952770124 scopus 로고    scopus 로고
    • The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells
    • Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 2011;32: 3750-63.
    • (2011) Biomaterials , vol.32 , pp. 3750-3763
    • Kim, K.1    Dean, D.2    Wallace, J.3    Breithaupt, R.4    Mikos, A.G.5    Fisher, J.P.6
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.