메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 422-434

Multiplicative update rules for concurrent nonnegative matrix factorization and maximum margin classification

Author keywords

Joint optimization; Maximum margin classification; Nonnegative matrix factorization (NMF); Support vector machines (SVMs)

Indexed keywords

CLASSIFICATION METHODS; CLASSIFICATION PERFORMANCE; DIMENSIONALITY REDUCTION; JOINT OPTIMIZATION; MAXIMUM MARGIN; MULTIPLICATIVE UPDATES; NONNEGATIVE MATRIX FACTORIZATION; SUPPORT VECTOR MACHINE (SVMS);

EID: 84884944454     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2235461     Document Type: Article
Times cited : (23)

References (43)
  • 1
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 3
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • Jul.
    • K. Devarajan, "Nonnegative matrix factorization: An analytical and interpretive tool in computational biology," PLoS Comput. Biol., vol. 4, no. 7, p. e1000029, Jul. 2008.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.7
    • Devarajan, K.1
  • 5
    • 0041339710 scopus 로고    scopus 로고
    • Introducing a weighted non-negative matrix factorization for image classification
    • DOI 10.1016/S0167-8655(03)00089-8
    • D. Guillamet, J. Vitrià, and B. Schiele, "Introducing a weighted non-negative matrix factorization for image classification," Pattern Recognit. Lett., vol. 24, no. 14, pp. 2447-2454, 2003. (Pubitemid 36911088)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2447-2454
    • Guillamet, D.1    Vitria, J.2    Schiele, B.3
  • 6
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA: MIT Press, Apr.
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press, Apr. 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 7
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • DOI 10.1109/TNN.2007.895831
    • C.-J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1589-1596, Nov. 2007. (Pubitemid 350148414)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Jun.
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Disc., vol. 2, pp. 121-167, Jun. 1998.
    • (1998) Data Mining Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 84871870466 scopus 로고    scopus 로고
    • Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation
    • Apr.
    • D. Geebelen, J. A. K. Suykens, and J. Vandewalle, "Reducing the number of support vectors of SVM classifiers using the smoothed separable case approximation," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4, pp. 682-688, Apr. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.4 , pp. 682-688
    • Geebelen, D.1    Suykens, J.A.K.2    Vandewalle, J.3
  • 10
    • 84876903780 scopus 로고    scopus 로고
    • Hybrid dimensionality reduction method based on support vector machine and independent component analysis
    • May
    • S. Moon and H. Qi, "Hybrid dimensionality reduction method based on support vector machine and independent component analysis," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 749-761, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 749-761
    • Moon, S.1    Qi, H.2
  • 11
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and out-of-sample model selection and error estimation for support vector machines
    • Sep.
    • D. Anguita, A. Ghio, L. Oneto, and S. Ridella, "In-sample and out-of-sample model selection and error estimation for support vector machines," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1390-1406, Sep. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 12
    • 33646528853 scopus 로고    scopus 로고
    • Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
    • May
    • S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 683-695, May 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.3 , pp. 683-695
    • Zafeiriou, S.1    Tefas, A.2    Buciu, I.3    Pitas, I.4
  • 13
    • 11144327494 scopus 로고    scopus 로고
    • Fisher non-negative matrix factorization for learning local features
    • Y. Wang and Y. Jia, "Fisher non-negative matrix factorization for learning local features," in Proc. Asian Conf. Comput. Vis., 2004, pp. 27-30.
    • Proc. Asian Conf. Comput. Vis., 2004 , pp. 27-30
    • Wang, Y.1    Jia, Y.2
  • 15
    • 49149100896 scopus 로고    scopus 로고
    • Nonnegative matrix factorization in polynomial feature space
    • Jun.
    • I. Buciu, N. Nikolaidis, and I. Pitas, "Nonnegative matrix factorization in polynomial feature space," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 1090-1100, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 1090-1100
    • Buciu, I.1    Nikolaidis, N.2    Pitas, I.3
  • 16
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Oct.
    • C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization," Neural Comput., vol. 19, no. 10, pp. 2756-2779, Oct. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 17
    • 34548062342 scopus 로고    scopus 로고
    • Novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems
    • DOI 10.1109/TIFS.2007.902017
    • I. Kotsia, S. Zafeiriou, and I. Pitas, "A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems," IEEE Trans. Inf. Forens. Security, vol. 2, no. 3, pp. 588-595, Sep. 2007. (Pubitemid 47290591)
    • (2007) IEEE Transactions on Information Forensics and Security , vol.2 , Issue.3 , pp. 588-595
    • Kotsia, I.1    Zafeiriou, S.2    Pitas, I.3
  • 18
    • 77950299288 scopus 로고    scopus 로고
    • Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications
    • Z. Liang, Y. Li, and T. Zhao, "Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications," Signal Process., vol. 90, no. 7, pp. 2150-2163, 2010.
    • (2010) Signal Process. , vol.90 , Issue.7 , pp. 2150-2163
    • Liang, Z.1    Li, Y.2    Zhao, T.3
  • 19
    • 44649157722 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with quadratic programming
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with quadratic programming," Neurocomputing, vol. 71, nos. 10-12, pp. 2309-2320, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2309-2320
    • Zdunek, R.1    Cichocki, A.2
  • 20
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, 2007. (Pubitemid 46590394)
    • (2007) Signal Processing , vol.87 , Issue.8 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 21
    • 84865442402 scopus 로고    scopus 로고
    • Online nonnegative matrix factorization with robust stochastic approximation
    • Jul.
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "Online nonnegative matrix factorization with robust stochastic approximation," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1087-1099, Jul. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.7 , pp. 1087-1099
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 22
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec.
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 24
    • 84876153078 scopus 로고    scopus 로고
    • Variational regularized 2-D nonnegative matrix factorization
    • May
    • B. Gao, W. Woo, and S. Dlay, "Variational regularized 2-D nonnegative matrix factorization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 703-716, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 703-716
    • Gao, B.1    Woo, W.2    Dlay, S.3
  • 26
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler and C. Schnörr, "Learning sparse representations by non-negative matrix factorization and sequential cone programming," J. Mach. Learn. Res., vol. 7, pp. 1385-1407, Dec. 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 27
    • 33745683306 scopus 로고    scopus 로고
    • Csiszár's divergences for non-negative matrix factorization: Family of new algorithms
    • Independent Component Analysis and Blind Signal Separation J. Rosca, D. Erdogmus, J. Prãsncipe, and S. Haykin, Eds. Berlin, Germany: Springer-Verlag
    • A. Cichocki, R. Zdunek, and S.-I. Amari, "Csiszár's divergences for non-negative matrix factorization: Family of new algorithms," in Independent Component Analysis and Blind Signal Separation (Lecture Notes in Computer Science), vol. 3889, J. Rosca, D. Erdogmus, J. Prãsncipe, and S. Haykin, Eds. Berlin, Germany: Springer-Verlag, 2006, pp. 32-39.
    • (2006) Lecture Notes in Computer Science , vol.3889 , pp. 32-39
    • Cichocki, A.1    Zdunek, R.2    Amari, S.-I.3
  • 28
    • 80052878044 scopus 로고    scopus 로고
    • Non-negative matrix factorization as a feature selection tool for maximum margin classifiers
    • M. D. Gupta and J. Xiao, "Non-negative matrix factorization as a feature selection tool for maximum margin classifiers," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 2841-2848.
    • Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011 , pp. 2841-2848
    • Gupta, M.D.1    Xiao, J.2
  • 29
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Royal Stat. Soc. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Soc. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 31
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • T. Hofmann, B. Schölkopf, and A. J. Smola, "Kernel methods in machine learning," Ann. Stat., vol. 36, no. 3, pp. 1171-1220, 2008.
    • (2008) Ann. Stat. , vol.36 , Issue.3 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 32
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization." Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 34
    • 0024704073 scopus 로고
    • Classification of radar returns from the ionosphere using neural networks
    • V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, "Classification of radar returns from the ionosphere using neural networks," in Johns Hopkins APL Tech. Dig., vol. 10. 1989, pp. 262-266.
    • (1989) Johns Hopkins APL Tech. Dig. , vol.10 , pp. 262-266
    • Sigillito, V.G.1    Wing, S.P.2    Hutton, L.V.3    Baker, K.B.4
  • 36
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Jan.
    • O. L. Mangasarian, W. N. Street, and W. H. Wolberg, "Breast cancer diagnosis and prognosis via linear programming," Operat. Res., vol. 43, pp. 570-577, Jan. 1995.
    • (1995) Operat. Res. , vol.43 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 37
    • 0001053757 scopus 로고
    • Universals and cultural differences in facial expressions of emotion
    • P. Ekman, "Universals and cultural differences in facial expressions of emotion," in Proc. Nebraska Symp. Motiat., vol. 19. 1971, pp. 207-283.
    • (1971) Proc. Nebraska Symp. Motiat. , vol.19 , pp. 207-283
    • Ekman, P.1
  • 39
    • 84884927855 scopus 로고    scopus 로고
    • [Online]. Available
    • MOBISERV-AIIA Database. (2011) [Online]. Available: http://www.aiia.csd. auth.gr/MOBISERV-AIIA/index.html
    • (2011) MOBISERV-AIIA Database
  • 40
    • 80052960444 scopus 로고    scopus 로고
    • Nutrition assistance based on skin color segmentation and support vector machines
    • Man-Machine Interactions 2 Berlin, Germany: Springer-Verlag
    • E. Marami, A. Tefas, and I. Pitas, "Nutrition assistance based on skin color segmentation and support vector machines," in Man-Machine Interactions 2 (Advances in Intelligent and Soft Computing), vol. 103. Berlin, Germany: Springer-Verlag, 2011, pp. 179-187.
    • (2011) Advances in Intelligent and Soft Computing , vol.103 , pp. 179-187
    • Marami, E.1    Tefas, A.2    Pitas, I.3
  • 42
    • 84855886298 scopus 로고    scopus 로고
    • Multiplicative update rules for incremental training of multiclass support vector machines
    • S. Nikitidis, N. Nikolaidis, and I. Pitas, "Multiplicative update rules for incremental training of multiclass support vector machines," Pattern Recognit., vol. 45, no. 5, pp. 1838-1852, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.5 , pp. 1838-1852
    • Nikitidis, S.1    Nikolaidis, N.2    Pitas, I.3
  • 43
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • Aug.
    • F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, "Multiplicative updates for nonnegative quadratic programming," Neural Comput., vol. 19, pp. 2004-2031, Aug. 2007.
    • (2007) Neural Comput. , vol.19 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.K.3    Lee, D.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.