메뉴 건너뛰기




Volumn 439, Issue 3, 2013, Pages 396-400

Metformin inhibits macrophage cholesterol biosynthesis rate: Possible role for metformin-induced oxidative stress

Author keywords

Cholesterol biosynthesis; Diabetes; Macrophages; Metformin; Oxidative stress

Indexed keywords

ACETIC ACID; ALPHA TOCOPHEROL; ARYLDIALKYLPHOSPHATASE 2; CHOLESTEROL; GLUTATHIONE; METFORMIN; MEVALONIC ACID; REACTIVE OXYGEN METABOLITE; SIMVASTATIN;

EID: 84884596941     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2013.08.062     Document Type: Article
Times cited : (15)

References (27)
  • 1
    • 44149084832 scopus 로고    scopus 로고
    • Macrophages: an elusive yet emerging therapeutic target of atherosclerosis
    • Tiwari R.L., Singh V., Barthwal M.K. Macrophages: an elusive yet emerging therapeutic target of atherosclerosis. Med. Res. Rev. 2008, 28(4):483-544.
    • (2008) Med. Res. Rev. , vol.28 , Issue.4 , pp. 483-544
    • Tiwari, R.L.1    Singh, V.2    Barthwal, M.K.3
  • 2
    • 0034648768 scopus 로고    scopus 로고
    • Atherosclerosis
    • Lusis A.J. Atherosclerosis. Nature 2000, 407(6801):233-241.
    • (2000) Nature , vol.407 , Issue.6801 , pp. 233-241
    • Lusis, A.J.1
  • 3
    • 0027509064 scopus 로고
    • Modified forms of low density lipoprotein and atherosclerosis
    • Aviram M. Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 1993, 98(1):1-9.
    • (1993) Atherosclerosis , vol.98 , Issue.1 , pp. 1-9
    • Aviram, M.1
  • 4
    • 0026333959 scopus 로고
    • Role of oxidized low density lipoprotein in atherogenesis
    • Witztum J.L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 1991, 88(6):1785-1792.
    • (1991) J. Clin. Invest. , vol.88 , Issue.6 , pp. 1785-1792
    • Witztum, J.L.1    Steinberg, D.2
  • 5
    • 84867335958 scopus 로고    scopus 로고
    • Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy
    • Kaplan M., Aviram M., Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus-induced atherogenesis: role of insulin therapy. Pharmacol. Ther. 2012, 136(2):175-185.
    • (2012) Pharmacol. Ther. , vol.136 , Issue.2 , pp. 175-185
    • Kaplan, M.1    Aviram, M.2    Hayek, T.3
  • 6
    • 79960135936 scopus 로고    scopus 로고
    • Review of the Diabetes Heart Study (DHS) family of studies: a comprehensively examined sample for genetic and epidemiological studies of type 2 diabetes and its complications
    • Bowden D.W., Cox A.J., Freedman B.I., Hugenschimdt C.E., Wagenknecht L.E., Herrington D., Agarwal S., Register T.C., Maldjian J.A., Ng M.C., et al. Review of the Diabetes Heart Study (DHS) family of studies: a comprehensively examined sample for genetic and epidemiological studies of type 2 diabetes and its complications. Rev. Diabet. Stud. 2010, 7(3):188-201.
    • (2010) Rev. Diabet. Stud. , vol.7 , Issue.3 , pp. 188-201
    • Bowden, D.W.1    Cox, A.J.2    Freedman, B.I.3    Hugenschimdt, C.E.4    Wagenknecht, L.E.5    Herrington, D.6    Agarwal, S.7    Register, T.C.8    Maldjian, J.A.9    Ng, M.C.10
  • 7
    • 84874357500 scopus 로고    scopus 로고
    • Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease
    • Hong J., Zhang Y., Lai S., Lv A., Su Q., Dong Y., Zhou Z., Tang W., Zhao J., Cui L., et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care 2013, 36(5):1304-1311.
    • (2013) Diabetes Care , vol.36 , Issue.5 , pp. 1304-1311
    • Hong, J.1    Zhang, Y.2    Lai, S.3    Lv, A.4    Su, Q.5    Dong, Y.6    Zhou, Z.7    Tang, W.8    Zhao, J.9    Cui, L.10
  • 8
    • 47949132533 scopus 로고    scopus 로고
    • Metformin inhibits intracellular lipid accumulation in the murine pre-adipocyte cell line, 3T3-L1
    • Alexandre K.B., Smit A.M., Gray I.P., Crowther N.J. Metformin inhibits intracellular lipid accumulation in the murine pre-adipocyte cell line, 3T3-L1. Diabetes Obes. Metab. 2008, 10(8):688-690.
    • (2008) Diabetes Obes. Metab. , vol.10 , Issue.8 , pp. 688-690
    • Alexandre, K.B.1    Smit, A.M.2    Gray, I.P.3    Crowther, N.J.4
  • 9
    • 33745822416 scopus 로고    scopus 로고
    • Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle
    • Collier C.A., Bruce C.R., Smith A.C., Lopaschuk G., Dyck D.J. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2006, 291(1):E182-E189.
    • (2006) Am. J. Physiol. Endocrinol. Metab. , vol.291 , Issue.1
    • Collier, C.A.1    Bruce, C.R.2    Smith, A.C.3    Lopaschuk, G.4    Dyck, D.J.5
  • 10
    • 9144271181 scopus 로고    scopus 로고
    • AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells
    • Zang M., Zuccollo A., Hou X., Nagata D., Walsh K., Herscovitz H., Brecher P., Ruderman N.B., Cohen R.A. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 2004, 279(46):47898-47905.
    • (2004) J. Biol. Chem. , vol.279 , Issue.46 , pp. 47898-47905
    • Zang, M.1    Zuccollo, A.2    Hou, X.3    Nagata, D.4    Walsh, K.5    Herscovitz, H.6    Brecher, P.7    Ruderman, N.B.8    Cohen, R.A.9
  • 11
    • 0037040185 scopus 로고    scopus 로고
    • Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
    • Kawaguchi T., Osatomi K., Yamashita H., Kabashima T., Uyeda K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 2002, 277(6):3829-3835.
    • (2002) J. Biol. Chem. , vol.277 , Issue.6 , pp. 3829-3835
    • Kawaguchi, T.1    Osatomi, K.2    Yamashita, H.3    Kabashima, T.4    Uyeda, K.5
  • 12
    • 79952693613 scopus 로고    scopus 로고
    • Regulation of hepatic metabolism by AMPK
    • Foretz M., Viollet B. Regulation of hepatic metabolism by AMPK. J. Hepatol. 2011, 54(4):827-829.
    • (2011) J. Hepatol. , vol.54 , Issue.4 , pp. 827-829
    • Foretz, M.1    Viollet, B.2
  • 13
    • 0025337185 scopus 로고
    • Metformin-induced changes in serum lipids, lipoproteins, and apoproteins in non-insulin-dependent diabetes mellitus
    • Schneider J., Erren T., Zofel P., Kaffarnik H. Metformin-induced changes in serum lipids, lipoproteins, and apoproteins in non-insulin-dependent diabetes mellitus. Atherosclerosis 1990, 82(1-2):97-103.
    • (1990) Atherosclerosis , vol.82 , Issue.1-2 , pp. 97-103
    • Schneider, J.1    Erren, T.2    Zofel, P.3    Kaffarnik, H.4
  • 14
    • 0025777477 scopus 로고
    • Effects of metformin on dyslipoproteinemia in non-insulin-dependent diabetes mellitus
    • Schneider J. Effects of metformin on dyslipoproteinemia in non-insulin-dependent diabetes mellitus. Diab. Metab. 1991, 17(1 Pt. 2):185-190.
    • (1991) Diab. Metab. , vol.17 , Issue.1 PART. 2 , pp. 185-190
    • Schneider, J.1
  • 15
    • 0842306338 scopus 로고    scopus 로고
    • Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus
    • Abbasi F., Chu J.W., McLaughlin T., Lamendola C., Leary E.T., Reaven G.M. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metabolism 2004, 53(2):159-164.
    • (2004) Metabolism , vol.53 , Issue.2 , pp. 159-164
    • Abbasi, F.1    Chu, J.W.2    McLaughlin, T.3    Lamendola, C.4    Leary, E.T.5    Reaven, G.M.6
  • 16
    • 33746068289 scopus 로고    scopus 로고
    • Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress
    • Rosen P., Wiernsperger N.F. Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diab. Metab. Res. Rev. 2006, 22(4):323-330.
    • (2006) Diab. Metab. Res. Rev. , vol.22 , Issue.4 , pp. 323-330
    • Rosen, P.1    Wiernsperger, N.F.2
  • 17
    • 0038410183 scopus 로고    scopus 로고
    • An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress
    • Bonnefont-Rousselot D., Raji B., Walrand S., Gardes-Albert M., Jore D., Legrand A., Peynet J., Vasson M.P. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003, 52(5):586-589.
    • (2003) Metabolism , vol.52 , Issue.5 , pp. 586-589
    • Bonnefont-Rousselot, D.1    Raji, B.2    Walrand, S.3    Gardes-Albert, M.4    Jore, D.5    Legrand, A.6    Peynet, J.7    Vasson, M.P.8
  • 18
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford D.B., Shaw R.J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 2009, 9(8):563-575.
    • (2009) Nat. Rev. Cancer , vol.9 , Issue.8 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 19
    • 55049101811 scopus 로고    scopus 로고
    • Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels
    • Anedda A., Rial E., Gonzalez-Barroso M.M. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels. J. Endocrinol. 2008, 199(1):33-40.
    • (2008) J. Endocrinol. , vol.199 , Issue.1 , pp. 33-40
    • Anedda, A.1    Rial, E.2    Gonzalez-Barroso, M.M.3
  • 20
    • 40549091931 scopus 로고    scopus 로고
    • Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States
    • Seeram N.P., Aviram M., Zhang Y., Henning S.M., Feng L., Dreher M., Heber D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56(4):1415-1422.
    • (2008) J. Agric. Food Chem. , vol.56 , Issue.4 , pp. 1415-1422
    • Seeram, N.P.1    Aviram, M.2    Zhang, Y.3    Henning, S.M.4    Feng, L.5    Dreher, M.6    Heber, D.7
  • 21
    • 0036015980 scopus 로고    scopus 로고
    • Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice
    • Rosenblat M., Coleman R., Aviram M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2002, 163(1):17-28.
    • (2002) Atherosclerosis , vol.163 , Issue.1 , pp. 17-28
    • Rosenblat, M.1    Coleman, R.2    Aviram, M.3
  • 22
    • 36048994061 scopus 로고    scopus 로고
    • Macrophage paraoxonase 2 (PON2) expression is up-regulated by pomegranate juice phenolic anti-oxidants via PPAR gamma and AP-1 pathway activation
    • Shiner M., Fuhrman B., Aviram M. Macrophage paraoxonase 2 (PON2) expression is up-regulated by pomegranate juice phenolic anti-oxidants via PPAR gamma and AP-1 pathway activation. Atherosclerosis 2007, 195(2):313-321.
    • (2007) Atherosclerosis , vol.195 , Issue.2 , pp. 313-321
    • Shiner, M.1    Fuhrman, B.2    Aviram, M.3
  • 23
    • 33748118458 scopus 로고    scopus 로고
    • Neither LKB1 nor AMPK are the direct targets of metformin
    • author reply 974-975
    • Hardie D.G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 2006, 131(3):973. author reply 974-975.
    • (2006) Gastroenterology , vol.131 , Issue.3 , pp. 973
    • Hardie, D.G.1
  • 24
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
    • Owen M.R., Doran E., Halestrap A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348(Pt 3):607-614.
    • (2000) Biochem. J. , vol.348 , Issue.PART 3 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 25
    • 0028001652 scopus 로고
    • Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties
    • Fuhrman B., Oiknine J., Aviram M. Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 1994, 111(1):65-78.
    • (1994) Atherosclerosis , vol.111 , Issue.1 , pp. 65-78
    • Fuhrman, B.1    Oiknine, J.2    Aviram, M.3
  • 26
    • 0031011549 scopus 로고    scopus 로고
    • Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL
    • Fuhrman B., Judith O., Keidar S., Ben-Yaish L., Kaplan M., Aviram M. Increased uptake of LDL by oxidized macrophages is the result of an initial enhanced LDL receptor activity and of a further progressive oxidation of LDL. Free Radic. Biol. Med. 1997, 23(1):34-46.
    • (1997) Free Radic. Biol. Med. , vol.23 , Issue.1 , pp. 34-46
    • Fuhrman, B.1    Judith, O.2    Keidar, S.3    Ben-Yaish, L.4    Kaplan, M.5    Aviram, M.6
  • 27
    • 0036736781 scopus 로고    scopus 로고
    • Do oxysterols control cholesterol homeostasis?
    • Bjorkhem I. Do oxysterols control cholesterol homeostasis?. J. Clin. Invest. 2002, 110(6):725-730.
    • (2002) J. Clin. Invest. , vol.110 , Issue.6 , pp. 725-730
    • Bjorkhem, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.