메뉴 건너뛰기




Volumn 23, Issue 3-4, 2013, Pages 719-728

A hybrid breast cancer detection system via neural network and feature selection based on SBS, SFS and PCA

Author keywords

Breast cancer diagnosis; Feature selection; Neural network; PCA; SBS; SFS

Indexed keywords

BREAST CANCER DIAGNOSIS; CROSS-VALIDATION METHODS; HYBRID FEATURE SELECTIONS; PCA; QUADRATIC DISCRIMINANT ANALYSIS; SBS; SEQUENTIAL FORWARD SELECTION; SFS;

EID: 84884596718     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0982-6     Document Type: Article
Times cited : (32)

References (34)
  • 1
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • doi:10.1016/j.eswa.2008.01.009
    • Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2): 3240-3247. doi: 10. 1016/j. eswa. 2008. 01. 009.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3240-3247
    • Akay, M.F.1
  • 2
    • 84957940642 scopus 로고    scopus 로고
    • Organization WH, Accessed 5 Sept 2011
    • Organization WH (2011) Cancer http://www. who. int/cancer/en/. Accessed 5 Sept 2011.
    • (2011) Cancer
  • 3
    • 2342646229 scopus 로고    scopus 로고
    • Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines
    • doi:10.1016/j.eswa.2003.12.013
    • Chou SM, Lee TS, Shao YE, Chen IF (2004) Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst Appl 27(1): 133-142. doi: 10. 1016/j. eswa. 2003. 12. 013.
    • (2004) Expert Syst Appl , vol.27 , Issue.1 , pp. 133-142
    • Chou, S.M.1    Lee, T.S.2    Shao, Y.E.3    Chen, I.F.4
  • 4
    • 60249099439 scopus 로고    scopus 로고
    • A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
    • doi:10.1016/j.eswa.2008.10.004
    • Yeh WC, Chang WW, Chung YY (2009) A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method. Expert Syst Appl 36(4): 8204-8211. doi: 10. 1016/j. eswa. 2008. 10. 004.
    • (2009) Expert Syst Appl , vol.36 , Issue.4 , pp. 8204-8211
    • Yeh, W.C.1    Chang, W.W.2    Chung, Y.Y.3
  • 6
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • doi:10.1016/S0167-8655(03)00047-3
    • Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14): 2195-2207. doi: 10. 1016/S0167-8655(03)00047-3.
    • (2003) Pattern Recognit Lett , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 7
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • doi:10.1016/j.dsp.2006.10.008
    • Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Process 17(4): 694-701. doi: 10. 1016/j. dsp. 2006. 10. 008.
    • (2007) Digit Signal Process , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 8
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • doi:10.1016/j.eswa.2008.02.064
    • Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2): 3465-3469. doi: 10. 1016/j. eswa. 2008. 02. 064.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 9
    • 79952449647 scopus 로고    scopus 로고
    • A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
    • doi:10.1016/j.eswa.2011.01.120
    • Chen HL, Yang B, Liu J, Liu DY (2011) A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7): 9014-9022. doi: 10. 1016/j. eswa. 2011. 01. 120.
    • (2011) Expert Syst Appl , vol.38 , Issue.7 , pp. 9014-9022
    • Chen, H.L.1    Yang, B.2    Liu, J.3    Liu, D.Y.4
  • 10
    • 79953712588 scopus 로고    scopus 로고
    • WBCD breast cancer database classification applying artificial metaplasticity neural network
    • doi:10.1016/j.eswa.2011.01.167
    • Marcano-Cedeno A, Quintanilla-Dominguez J, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38(8): 9573-9579. doi: 10. 1016/j. eswa. 2011. 01. 167.
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 9573-9579
    • Marcano-Cedeno, A.1    Quintanilla-Dominguez, J.2    Andina, D.3
  • 11
    • 84867725440 scopus 로고    scopus 로고
    • Breast cancer diagnosis based on a kernel orthogonal transform
    • doi:10.1007/s00521-011-0547-0
    • Xu Y, Qi Z, Wang J (2011) Breast cancer diagnosis based on a kernel orthogonal transform. Neural Comput Appl. doi: 10. 1007/s00521-011-0547-0.
    • (2011) Neural Comput Appl
    • Xu, Y.1    Qi, Z.2    Wang, J.3
  • 12
    • 84871956910 scopus 로고    scopus 로고
    • Local linear wavelet neural network for breast cancer recognition
    • doi:10.1007/s00521-011-0670-y
    • Senapati MR, Mohanty AK, Dash S, Dash PK (2011) Local linear wavelet neural network for breast cancer recognition. Neural Comput Appl. doi: 10. 1007/s00521-011-0670-y.
    • (2011) Neural Comput Appl
    • Senapati, M.R.1    Mohanty, A.K.2    Dash, S.3    Dash, P.K.4
  • 13
    • 33947653184 scopus 로고    scopus 로고
    • Implementing automated diagnostic systems for breast cancer detection
    • doi:10.1016/j.eswa.2006.08.005
    • Ubeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4): 1054-1062. doi: 10. 1016/j. eswa. 2006. 08. 005.
    • (2007) Expert Syst Appl , vol.33 , Issue.4 , pp. 1054-1062
    • Ubeyli, E.D.1
  • 14
    • 0004305250 scopus 로고
    • Accessed 2 Sept 2011
    • Wolberg WH (1991) Wisconsin Breast Cancer Database http://archive. ics. uci. edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin. names. Accessed 2 Sept 2011.
    • (1991) Wisconsin Breast Cancer Database
    • Wolberg, W.H.1
  • 15
    • 33847169952 scopus 로고    scopus 로고
    • Comparison of feature selection techniques for detection of malignant tumor in brain images
    • Sasikala M, Kumaravel N (2005) Comparison of feature selection techniques for detection of malignant tumor in brain images. In: Indicon 2005 Proceedings: 212-215.
    • (2005) In: Indicon 2005 Proceedings , pp. 212-215
    • Sasikala, M.1    Kumaravel, N.2
  • 16
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • doi:10.1109/Tsmcb.2006.883267
    • Zhu ZX, Ong YS, Dash M (2007) Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans Syst Man Cybern Part B Cybern 37(1): 70-76. doi: 10. 1109/Tsmcb. 2006. 883267.
    • (2007) IEEE Trans Syst Man Cybern Part B Cybern , vol.37 , Issue.1 , pp. 70-76
    • Zhu, Z.X.1    Ong, Y.S.2    Dash, M.3
  • 17
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2): 273-324.
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 18
    • 78751648113 scopus 로고    scopus 로고
    • A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets
    • doi:10.1016/j.patrec.2010.12.016
    • Bermejo P, Gamez JA, Puerta JM (2011) A GRASP algorithm for fast hybrid (filter-wrapper) feature subset selection in high-dimensional datasets. Pattern Recognit Lett 32(5): 701-711. doi: 10. 1016/j. patrec. 2010. 12. 016.
    • (2011) Pattern Recognit Lett , vol.32 , Issue.5 , pp. 701-711
    • Bermejo, P.1    Gamez, J.A.2    Puerta, J.M.3
  • 19
    • 0028547556 scopus 로고
    • Floating search methods in feature-selection
    • Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature-selection. Pattern Recognit Lett 15(11): 1119-1125.
    • (1994) Pattern Recognit Lett , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 20
    • 84874373575 scopus 로고    scopus 로고
    • Feature selection methods and algorithms
    • Ladha L, Deepa T (2011) Feature selection methods and algorithms. Int J Comput Sci Eng (IJCSE) 3(5): 1787-1797.
    • (2011) Int J Comput Sci Eng (IJCSE) , vol.3 , Issue.5 , pp. 1787-1797
    • Ladha, L.1    Deepa, T.2
  • 21
    • 79951671569 scopus 로고    scopus 로고
    • Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
    • doi:10.1016/j.cap.2010.11.051
    • Kim KS, Choi HH, Moon CS, Mun CW (2011) Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr Appl Phys 11(3): 740-745. doi: 10. 1016/j. cap. 2010. 11. 051.
    • (2011) Curr Appl Phys , vol.11 , Issue.3 , pp. 740-745
    • Kim, K.S.1    Choi, H.H.2    Moon, C.S.3    Mun, C.W.4
  • 24
    • 79953700261 scopus 로고    scopus 로고
    • A new intelligent hepatitis diagnosis system: PCA-LSSVM
    • doi:10.1016/j.eswa.2011.01.014
    • Calisir D, Dogantekin E (2011) A new intelligent hepatitis diagnosis system: PCA-LSSVM. Expert Syst Appl 38(8): 10705-10708. doi: 10. 1016/j. eswa. 2011. 01. 014.
    • (2011) Expert Syst Appl , vol.38 , Issue.8 , pp. 10705-10708
    • Calisir, D.1    Dogantekin, E.2
  • 25
    • 56349151247 scopus 로고    scopus 로고
    • Web-based mobile robot platform for real-time exercises
    • doi:10.1016/j.eswa.2008.01.046
    • Sagiroglu S, Yilmaz N (2009) Web-based mobile robot platform for real-time exercises. Expert Syst Appl 36(2): 3153-3166. doi: 10. 1016/j. eswa. 2008. 01. 046.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3153-3166
    • Sagiroglu, S.1    Yilmaz, N.2
  • 26
    • 8744301216 scopus 로고    scopus 로고
    • Multilayer perceptron neural networks to compute quasistatic parameters of asymmetric coplanar waveguides
    • doi:10.1016/j.neucom.2004.04.005
    • Ubeyli ED, Guler I (2004) Multilayer perceptron neural networks to compute quasistatic parameters of asymmetric coplanar waveguides. Neurocomputing 62: 349-365. doi: 10. 1016/j. neucom. 2004. 04. 005.
    • (2004) Neurocomputing , vol.62 , pp. 349-365
    • Ubeyli, E.D.1    Guler, I.2
  • 27
    • 6344294316 scopus 로고    scopus 로고
    • Classification of the frequency of carotid stenosis with MLP and RBF neural networks in patients with coroner artery disease
    • Yi{dotless}ldi{dotless}ri{dotless}m H, Alti{dotless}nsoy H, Bari{dotless}şçi{dotless} N, Ergün U, Oǧur E, Hardalaç F, Güler İ (2004) Classification of the frequency of carotid stenosis with MLP and RBF neural networks in patients with coroner artery disease. J Med Syst 28(6): 591-601.
    • (2004) J Med Syst , vol.28 , Issue.6 , pp. 591-601
    • Yildirim, H.1    Altinsoy, H.2    Barişçi, N.3    Ergün, U.4    Oǧur, E.5    Hardalaç, F.6    Güler, I.7
  • 29
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network model
    • doi:10.1016/j.patcog.2004.06.009
    • Guler I, Ubeyli ED (2005) ECG beat classifier designed by combined neural network model. Pattern Recognit 38(2): 199-208. doi: 10. 1016/j. patcog. 2004. 06. 009.
    • (2005) Pattern Recognit , vol.38 , Issue.2 , pp. 199-208
    • Guler, I.1    Ubeyli, E.D.2
  • 31
    • 0031171934 scopus 로고    scopus 로고
    • Object recognition using a neural network with optimal feature extraction
    • Lee JD (1997) Object recognition using a neural network with optimal feature extraction. Math Comput Modell 25(12): 105-117.
    • (1997) Math Comput Modell , vol.25 , Issue.12 , pp. 105-117
    • Lee, J.D.1
  • 32
    • 0027205884 scopus 로고
    • A Scaled Conjugate-Gradient Algorithm for Fast Supervised Learning
    • Moller MF (1993) A Scaled Conjugate-Gradient Algorithm for Fast Supervised Learning. Neural Netw 6(4): 525-533.
    • (1993) Neural Netw , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 33
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70: 1276-1288.
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • Francois, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 34
    • 0033903664 scopus 로고    scopus 로고
    • Unsupervised stratification of cross-validation for accuracy estimation
    • Diamantidis NA, Karlis D, Giakoumakis EA (2000) Unsupervised stratification of cross-validation for accuracy estimation. Artificial Intell 116: 1-16.
    • (2000) Artificial Intell , vol.116 , pp. 1-16
    • Diamantidis, N.A.1    Karlis, D.2    Giakoumakis, E.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.