메뉴 건너뛰기




Volumn 21, Issue 8, 2012, Pages 1865-1870

Breast cancer diagnosis based on a kernel orthogonal transform

Author keywords

Breast cancer diagnosis; Kernel method; Machine learning; Pattern recognition

Indexed keywords

BREAST CANCER DIAGNOSIS; CANCER DIAGNOSIS; CLASSIFICATION ACCURACY; DATA SETS; KERNEL METHODS; MACHINE LEARNING METHODS; NEGATIVE PREDICTIVE VALUE; ORTHOGONAL TRANSFORMS; RECEIVER OPERATING CHARACTERISTICS; WISCONSIN;

EID: 84867725440     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0547-0     Document Type: Article
Times cited : (9)

References (14)
  • 1
    • 84867707312 scopus 로고    scopus 로고
    • http://www. who. int/mediacentre/factsheets/fs297/en/.
  • 2
    • 57749171711 scopus 로고    scopus 로고
    • Breast cancer diagnosis using statistical neural networks, XII
    • Ki{dotless}yan T, Yi{dotless}ldi{dotless}ri{dotless}m T (2003) Breast cancer diagnosis using statistical neural networks, XII. In: TAINN symposium proceedings, E(8).
    • (2003) TAINN symposium proceedings , vol.E , Issue.8
    • Kiyan, T.1    Yildirim, T.2
  • 3
    • 9644288159 scopus 로고    scopus 로고
    • Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis
    • West D, Mangiameli P, Rampal R, West V (2005) Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis. Eur J Oper Res 162: 532-551.
    • (2005) Eur J Oper Res , vol.162 , pp. 532-551
    • West, D.1    Mangiameli, P.2    Rampal, R.3    West, V.4
  • 4
    • 2142650125 scopus 로고    scopus 로고
    • A reformative kernel fisher discriminant analysis
    • Xu Y, Yang JY, Yang J (2004) A reformative kernel fisher discriminant analysis. Pattern Recogn 37: 1299-1302.
    • (2004) Pattern Recogn , vol.37 , pp. 1299-1302
    • Xu, Y.1    Yang, J.Y.2    Yang, J.3
  • 6
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan JR (1996) Improved use of continuous attributes in C4. 5. J Artific Intell Res 4: 77-90.
    • (1996) J Artific Intell Res , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 7
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24: 2195-2207.
    • (2003) Pattern Recognit Lett , vol.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 8
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16: 149-169.
    • (1999) Artif Intell Med , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 12
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36: 3240-3247.
    • (2009) Expert Syst Appl , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 13
    • 84867707313 scopus 로고    scopus 로고
    • orthogonal discriminant vectors for face recognition across pose
    • (in press)
    • Wang J, You J, Li Q, Xu Y (2011) orthogonal discriminant vectors for face recognition across pose, Pattern Recognition (in press).
    • (2011) Pattern Recognition
    • Wang, J.1    You, J.2    Li, Q.3    Xu, Y.4
  • 14
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Schölkopf B et al (1999) Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 10(5): 1000-1017.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 1000-1017
    • Schölkopf, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.