메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages

Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction

Author keywords

[No Author keywords available]

Indexed keywords

FUNCTIONAL ANNOTATION; GENE FUNCTION PREDICTION; HIERARCHICAL MULTI-LABEL CLASSIFICATIONS; HIERARCHICAL ORGANIZATIONS; INDEPENDENTLY AND IDENTICALLY DISTRIBUTED; PREDICTIVE PERFORMANCE; PROTEIN-PROTEIN INTERACTION NETWORKS; TREE-BASED ALGORITHMS;

EID: 84884553372     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-14-285     Document Type: Article
Times cited : (46)

References (51)
  • 1
    • 6944251719 scopus 로고    scopus 로고
    • Predicting gene function in Saccharomyces cerevisiae
    • 10.1093/bioinformatics/btg1058, 14534170
    • Clare A, King RD. Predicting gene function in Saccharomyces cerevisiae. Bioinformatics 2003, 19(Suppl 2):ii42-ii49. 10.1093/bioinformatics/btg1058, 14534170.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Clare, A.1    King, R.D.2
  • 2
    • 84885079239 scopus 로고    scopus 로고
    • Protein interaction networks: protein domain interaction and protein function prediction
    • Heidelberg: Springer-Verlag, Lu HH, Scholkopf B, Zhao H
    • Qi Y, Noble W. Protein interaction networks: protein domain interaction and protein function prediction. Handbook of Computational Statistics: Statistical Bioinformatics 2011, Heidelberg: Springer-Verlag, Lu HH, Scholkopf B, Zhao H.
    • (2011) Handbook of Computational Statistics: Statistical Bioinformatics
    • Qi, Y.1    Noble, W.2
  • 3
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • 10.1038/nmeth.2340, 3584181, 23353650
    • Radivojac P, et al. A large-scale evaluation of computational protein function prediction. Nat Methods 2013, 10(3):221-227. 10.1038/nmeth.2340, 3584181, 23353650.
    • (2013) Nat Methods , vol.10 , Issue.3 , pp. 221-227
    • Radivojac, P.1
  • 4
  • 5
    • 51749110896 scopus 로고    scopus 로고
    • Integration of relational and hierarchical network information for protein function prediction
    • Jiang X, Nariai N, Steffen M, Kasif S, Kolaczyk E. Integration of relational and hierarchical network information for protein function prediction. BMC Bioinformatics 2008, 9(350).
    • (2008) BMC Bioinformatics , vol.9 , Issue.350
    • Jiang, X.1    Nariai, N.2    Steffen, M.3    Kasif, S.4    Kolaczyk, E.5
  • 6
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. The gene ontology consortium
    • 10.1038/75556, 3037419, 10802651
    • Ashburner M, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29. 10.1038/75556, 3037419, 10802651.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 8
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • 10.1093/bioinformatics/btk048, 16410319
    • Barutcuoglu Z, Schapire RE, Troyanskaya OG. Hierarchical multi-label prediction of gene function. Bioinformatics 2006, 22(7):830-836. 10.1093/bioinformatics/btk048, 16410319.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 10
    • 0023972269 scopus 로고
    • Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities
    • 10.1002/bip.360270308, 3359010
    • Horne D. Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 1988, 27:451-477. 10.1002/bip.360270308, 3359010.
    • (1988) Biopolymers , vol.27 , pp. 451-477
    • Horne, D.1
  • 14
    • 67049137961 scopus 로고    scopus 로고
    • A shrinkage approach for modeling non-stationary relational autocorrelation
    • Washington D.C.: IEEE Computer Society
    • Angin P, Neville J. A shrinkage approach for modeling non-stationary relational autocorrelation. Proc. 8th Intl. Conf. on Data Mining 2008, 707-712. Washington D.C.: IEEE Computer Society.
    • (2008) Proc. 8th Intl. Conf. on Data Mining , pp. 707-712
    • Angin, P.1    Neville, J.2
  • 18
    • 79961177418 scopus 로고    scopus 로고
    • Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science
    • Steinhaeuser K, Chawla NV, Ganguly AR. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat Anal Data Mining 2011, 4(5):497-511.
    • (2011) Stat Anal Data Mining , vol.4 , Issue.5 , pp. 497-511
    • Steinhaeuser, K.1    Chawla, N.V.2    Ganguly, A.R.3
  • 19
    • 0003309977 scopus 로고    scopus 로고
    • Network autocorrelation models: Problems and prospects
    • Ann Arbor: Ann Arbor Institute of Mathematical Geography; 1990
    • Doreian P. Network autocorrelation models: Problems and prospects. Spatial Statistics: Past, Present, and Future Ann Arbor: Ann Arbor Institute of Mathematical Geography; 1990.
    • Spatial Statistics: Past, Present, and Future
    • Doreian, P.1
  • 20
    • 84861179768 scopus 로고    scopus 로고
    • "Guilt by Association" is the exception rather than the rule in gene networks
    • 3315453, 22479173
    • Gillis J, Pavlidis P. "Guilt by Association" is the exception rather than the rule in gene networks. PLoS Comput Biol 2012, 8(3):e1002444+. 3315453, 22479173.
    • (2012) PLoS Comput Biol , vol.8 , Issue.3
    • Gillis, J.1    Pavlidis, P.2
  • 21
    • 0027881344 scopus 로고
    • Spatial autocorrelation: trouble or new paradigm?
    • Legendre P. Spatial autocorrelation: trouble or new paradigm?. Ecology 1993, 74(6):1659-1673.
    • (1993) Ecology , vol.74 , Issue.6 , pp. 1659-1673
    • Legendre, P.1
  • 22
    • 84870551039 scopus 로고    scopus 로고
    • Dealing with spatial autocorrelation when learning predictive clustering trees
    • Stojanova D, Ceci M, Appice A, Malerba D, Dzeroski S. Dealing with spatial autocorrelation when learning predictive clustering trees. Ecol Inform 2013, 13:22-39.
    • (2013) Ecol Inform , vol.13 , pp. 22-39
    • Stojanova, D.1    Ceci, M.2    Appice, A.3    Malerba, D.4    Dzeroski, S.5
  • 23
    • 84897674228 scopus 로고    scopus 로고
    • SLIQ: A fast scalable classifier for data mining
    • Heidelberg: Springer-Verlag, [Lecture Notes in Computer Science, volume 1057]
    • Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining. Proc. 5th Intl. Conf. Extending Database Technology 1996, 18-32. Heidelberg: Springer-Verlag, [Lecture Notes in Computer Science, volume 1057].
    • (1996) Proc. 5th Intl. Conf. Extending Database Technology , pp. 18-32
    • Mehta, M.1    Agrawal, R.2    Rissanen, J.3
  • 24
    • 0033933636 scopus 로고    scopus 로고
    • Cascaded multiple classifiers for secondary structure prediction
    • 10.1110/ps.9.6.1162, 2144653, 10892809
    • Ouali M, King R. Cascaded multiple classifiers for secondary structure prediction. Protein Sci 2000, 9(6):1162-1176. 10.1110/ps.9.6.1162, 2144653, 10892809.
    • (2000) Protein Sci , vol.9 , Issue.6 , pp. 1162-1176
    • Ouali, M.1    King, R.2
  • 25
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • 10.1093/nar/25.17.3389, 146917, 9254694
    • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402. 10.1093/nar/25.17.3389, 146917, 9254694.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.1    Madden, T.2    Schaffer, A.3    Zhang, J.4    Zhang, Z.5    Miller, W.6    Lipman, D.7
  • 26
    • 9144257282 scopus 로고    scopus 로고
    • The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
    • 10.1093/nar/gkh894, 524302, 15486203, Ruepp
    • et al. Ruepp The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 2004, 32(18):5539-5545. 10.1093/nar/gkh894, 524302, 15486203, Ruepp.
    • (2004) Nucleic Acids Res , vol.32 , Issue.18 , pp. 5539-5545
  • 29
    • 29144442904 scopus 로고    scopus 로고
    • Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 2005, 21:302-310.
    • (2005) Bioinformatics , vol.21 , pp. 302-310
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 30
    • 1542327694 scopus 로고    scopus 로고
    • Whole-genome annotation by using evidence integration in functional-linkage networks
    • 10.1073/pnas.0307326101, 365715, 14981259
    • Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S. Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 2004, 101:2888-2893. 10.1073/pnas.0307326101, 365715, 14981259.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2888-2893
    • Karaoz, U.1    Murali, T.M.2    Letovsky, S.3    Zheng, Y.4    Ding, C.5    Cantor, C.R.6    Kasif, S.7
  • 31
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G. On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 1968, 14:55-63.
    • (1968) IEEE Trans Inf Theory , vol.14 , pp. 55-63
    • Hughes, G.1
  • 32
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • New York: ACM, Ghahramani Z
    • Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. ICML, Volume 227 of ACM International Conference Proceeding Series 2007, 1151-1157. New York: ACM, Ghahramani Z.
    • (2007) ICML, Volume 227 of ACM International Conference Proceeding Series , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 35
    • 80054049494 scopus 로고    scopus 로고
    • Protein complex detection with semi-supervised learning in protein interaction networks
    • 10.1186/1477-5956-9-41, 3162492, 21791079
    • Shi L, Lei X, Zhang A. Protein complex detection with semi-supervised learning in protein interaction networks. Proteome Sci 2011, 9:41-42. 10.1186/1477-5956-9-41, 3162492, 21791079.
    • (2011) Proteome Sci , vol.9 , pp. 41-42
    • Shi, L.1    Lei, X.2    Zhang, A.3
  • 36
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • 10.1089/10665270252935539, 12015889
    • Pavlidis P, Weston J, Cai J, Noble WS. Learning gene functional classifications from multiple data types. J Comput Biol 2002, 9(2):401-411. 10.1089/10665270252935539, 12015889.
    • (2002) J Comput Biol , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.S.4
  • 37
    • 36849044810 scopus 로고    scopus 로고
    • Computational approaches for protein function prediction
    • Tech. Rep. TR 06-028, Department of Computer Science and Engineering, University of Minnesota, Twin Cities 2006
    • Pandey G, Kumar V, Steinbach M. Computational approaches for protein function prediction. Tech. Rep. TR 06-028, Department of Computer Science and Engineering, University of Minnesota, Twin Cities 2006.
    • Pandey, G.1    Kumar, V.2    Steinbach, M.3
  • 39
    • 33750304849 scopus 로고    scopus 로고
    • Gene function classification using Bayesian models with hierarchy-based priors
    • 10.1186/1471-2105-7-448, 1618412, 17038174
    • Shahbaba B, Neal RM. Gene function classification using Bayesian models with hierarchy-based priors. BMC Bioinformatics 2006, 7:448. 10.1186/1471-2105-7-448, 1618412, 17038174.
    • (2006) BMC Bioinformatics , vol.7 , pp. 448
    • Shahbaba, B.1    Neal, R.M.2
  • 40
    • 77951518446 scopus 로고    scopus 로고
    • Hierarchical classification of gene ontology terms using the GOstruct method
    • Sokolov A, Ben-Hur A. Hierarchical classification of gene ontology terms using the GOstruct method. J Bioinformatics Comput Biol 2010, 8(2):357-376.
    • (2010) J Bioinformatics Comput Biol , vol.8 , Issue.2 , pp. 357-376
    • Sokolov, A.1    Ben-Hur, A.2
  • 41
    • 77956371081 scopus 로고    scopus 로고
    • Reaction kernels - structured output prediction approaches for novel enzyme function
    • Astikainen K, Pitkänen E, Rousu J, Holm L, Szedmák S. Reaction kernels - structured output prediction approaches for novel enzyme function. Bioinformatics 2010, 48-55.
    • (2010) Bioinformatics , pp. 48-55
    • Astikainen, K.1    Pitkänen, E.2    Rousu, J.3    Holm, L.4    Szedmák, S.5
  • 42
    • 79952831194 scopus 로고    scopus 로고
    • True path rule hierarchical ensembles for genome-wide gene function prediction
    • Valentini G. True path rule hierarchical ensembles for genome-wide gene function prediction. IEEE ACM Trans Comput Biol Bioinformatics 2010, 8(3):832-847.
    • (2010) IEEE ACM Trans Comput Biol Bioinformatics , vol.8 , Issue.3 , pp. 832-847
    • Valentini, G.1
  • 43
    • 33947252154 scopus 로고    scopus 로고
    • Network-based prediction of protein function
    • Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol 2007, 3(88).
    • (2007) Mol Syst Biol , vol.3 , Issue.88
    • Sharan, R.1    Ulitsky, I.2    Shamir, R.3
  • 44
    • 77957242540 scopus 로고    scopus 로고
    • It's the machine that matters: Predicting gene function and phenotype from protein networks
    • Wang PI, Marcott EM. It's the machine that matters: Predicting gene function and phenotype from protein networks. J Proteomic 2010, 73(11):2277-2289.
    • (2010) J Proteomic , vol.73 , Issue.11 , pp. 2277-2289
    • Wang, P.I.1    Marcott, E.M.2
  • 45
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: a probabilistic approach
    • Letovsky S, Kasif S. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 2003, 19(suppl 1):i197-i204.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Letovsky, S.1    Kasif, S.2
  • 46
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • 10.1038/nbt825, 12740586
    • Vazquez A, Flammini A, Maritan A, Vespignani A. Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 2003, 21(6):697-700. 10.1038/nbt825, 12740586.
    • (2003) Nat Biotechnol , vol.21 , Issue.6 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 47
    • 55449131589 scopus 로고    scopus 로고
    • Probabilistic protein function prediction from feterogeneous genome-wide data
    • 10.1371/journal.pone.0000337, 1828618, 17396164
    • Nariai N, Kolaczyk E, Kasif S. Probabilistic protein function prediction from feterogeneous genome-wide data. PLoS ONE 2007, 2(3):e337. 10.1371/journal.pone.0000337, 1828618, 17396164.
    • (2007) PLoS ONE , vol.2 , Issue.3
    • Nariai, N.1    Kolaczyk, E.2    Kasif, S.3
  • 48
    • 49649109285 scopus 로고    scopus 로고
    • Uncovering biological network function via graphlet degree signatures
    • 2623288, 19259413
    • Milenkovic T, Przulj N. Uncovering biological network function via graphlet degree signatures. Cancer Inform 2008, 6:257-273. 2623288, 19259413.
    • (2008) Cancer Inform , vol.6 , pp. 257-273
    • Milenkovic, T.1    Przulj, N.2
  • 50
    • 34547840224 scopus 로고    scopus 로고
    • Information theory applied to the sparse gene ontology annotation network to predict novel gene function
    • 2882681, 17646340
    • Tao Y, Sam L, Li J, Friedman C, Lussier YA. Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics 2007, 23(13):i529-i538. 2882681, 17646340.
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Tao, Y.1    Sam, L.2    Li, J.3    Friedman, C.4    Lussier, Y.A.5
  • 51
    • 67650898284 scopus 로고    scopus 로고
    • Incorporating functional inter-relationships into protein function prediction algorithms
    • Pandey G, Myers C, Kumar V. Incorporating functional inter-relationships into protein function prediction algorithms. BMC Bioinformatics 2009, 10(142).
    • (2009) BMC Bioinformatics , vol.10 , Issue.142
    • Pandey, G.1    Myers, C.2    Kumar, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.