메뉴 건너뛰기




Volumn 10, Issue 3, 2013, Pages

Propensity score methodology for confounding control in health care utilization databases

Author keywords

Confounding; Epidemiologic methods; Health care databases; Non experimental studies; Propensity score

Indexed keywords


EID: 84884547429     PISSN: None     EISSN: 22820930     Source Type: Journal    
DOI: 10.2427/8940     Document Type: Article
Times cited : (54)

References (92)
  • 1
    • 18044374934 scopus 로고    scopus 로고
    • What do we show and who does so? An analysis of the abstracts presented at the 19th ICPE
    • Arana A, Rivero E, Egberts TCG. What do we show and who does so? An analysis of the abstracts presented at the 19th ICPE. Pharmacoepidemiol Drug Saf. 2004; 13: S330-1.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13
    • Arana, A.1    Rivero, E.2    Egberts, T.C.G.3
  • 2
    • 18044398603 scopus 로고    scopus 로고
    • Using health care utilization databases for epidemiologic research on therapeutics
    • Schneeweiss S, Avorn J. Using health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005; 58: 323-37.
    • (2005) J Clin Epidemiol , vol.58 , pp. 323-337
    • Schneeweiss, S.1    Avorn, J.2
  • 3
    • 0025690750 scopus 로고
    • Use of automated databases for Pharmacoepidemiology research
    • Strom BL, Carson JL. Use of automated databases for Pharmacoepidemiology research. Epidemiol Rev. 1990; 12: 87-107.
    • (1990) Epidemiol Rev , vol.12 , pp. 87-107
    • Strom, B.L.1    Carson, J.L.2
  • 4
    • 0030187757 scopus 로고    scopus 로고
    • Confounding by indication
    • Walker AM. Confounding by indication. Epidemiology. 1996; 7(4): 335-6.
    • (1996) Epidemiology , vol.7 , Issue.4 , pp. 335-336
    • Walker, A.M.1
  • 5
    • 0025805153 scopus 로고
    • Channeling bias in the interpretation of drug effects
    • Petri H, Urquhart J. Channeling bias in the interpretation of drug effects. Stat Med. 1991; 10(4): 577-81.
    • (1991) Stat Med , vol.10 , Issue.4 , pp. 577-581
    • Petri, H.1    Urquhart, J.2
  • 6
    • 0004188552 scopus 로고
    • An Introduction to the Methods of Epidemiology. Newton Lower Falls, MA: Epidemiology Resources Inc
    • Walker AM. Observation and inference. An Introduction to the Methods of Epidemiology. Newton Lower Falls, MA: Epidemiology Resources Inc.; 1991: 119-28.
    • (1991) Observation and Inference , pp. 119-128
    • Walker, A.M.1
  • 7
    • 18044398603 scopus 로고    scopus 로고
    • A review of uses of health care utilization databases for epidemiologic research on therapeutics
    • Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005; 58(4): 323-37.
    • (2005) J Clin Epidemiol , vol.58 , Issue.4 , pp. 323-337
    • Schneeweiss, S.1    Avorn, J.2
  • 8
    • 77953632279 scopus 로고    scopus 로고
    • Confounding control in healthcare database research: Challenges and potential approaches
    • Brookhart MA, Sturmer T, Glynn RJ, et al. Confounding control in healthcare database research: challenges and potential approaches. Med Care 2010; 48(6 Suppl): S114-20.
    • (2010) Med Care , vol.48 , Issue.6 SUPPL.
    • Brookhart, M.A.1    Sturmer, T.2    Glynn, R.J.3
  • 9
    • 34848867584 scopus 로고    scopus 로고
    • Use of propensity score technique to account for exposure related covariates: An example and lesson
    • Seeger JD, Kurth T, Walker AM. Use of propensity score technique to account for exposure related covariates: an example and lesson. Med Care. 2007; 45(Supl 2): S143-8.
    • (2007) Med Care , vol.45 , Issue.SUPPL. 2
    • Seeger, J.D.1    Kurth, T.2    Walker, A.M.3
  • 10
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Jan
    • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999 Jan; 10(1): 37-48.
    • (1999) Epidemiology , vol.10 , Issue.1 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 11
    • 77950655948 scopus 로고    scopus 로고
    • Chapman & Hall/CRC, 2013
    • Hernan MA, Robins JM. Causal Inference (Chapman & Hall/CRC, 2013). http://www.hsph.harvard.edu/miguelhernan/causal-inference-book/.
    • Causal Inference
    • Hernan, M.A.1    Robins, J.M.2
  • 12
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996; 49(12): 1373-9.
    • (1996) J Clin Epidemiol , vol.49 , Issue.12 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3
  • 13
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983; 70(1): 41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 14
    • 33645210305 scopus 로고    scopus 로고
    • Indications for Propensity Scores and Review of Their Use in Pharmacoepidemiology
    • Glynn RJ, Schneeweiss S, Stürmer T. Indications for Propensity Scores and Review of Their Use in Pharmacoepidemiology. Basic Clin Pharmacol Toxicol. 2006; 98(3): 253-9.
    • (2006) Basic Clin Pharmacol Toxicol , vol.98 , Issue.3 , pp. 253-259
    • Glynn, R.J.1    Schneeweiss, S.2    Stürmer, T.3
  • 15
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: A simulation study
    • 546.5
    • Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Saf 2008; 17: 546.5.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 16
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group
    • D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group. Stat Med 1998; 17(19): 2265-81.
    • (1998) Stat Med , vol.17 , Issue.19 , pp. 2265-2281
    • D'agostino Jr., R.B.1
  • 17
    • 0037108832 scopus 로고    scopus 로고
    • Rare outcomes, common treatments: Analytic strategies using propensity scores
    • Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med 2002; 137: 693-5.
    • (2002) Ann Intern Med , vol.137 , pp. 693-695
    • Braitman, L.E.1    Rosenbaum, P.R.2
  • 19
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using the propensity score
    • Rubin DB. Estimating causal effects from large data sets using the propensity score. Ann Intern Med 1997; 127: 757-63.
    • (1997) Ann Intern Med , vol.127 , pp. 757-763
    • Rubin, D.B.1
  • 20
    • 33645236260 scopus 로고    scopus 로고
    • Variable selection for propensity score models
    • Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol. 2006; 163(12): 1149-56.
    • (2006) Am J Epidemiol , vol.163 , Issue.12 , pp. 1149-1156
    • Brookhart, M.A.1    Schneeweiss, S.2    Rothman, K.J.3
  • 21
    • 80053281276 scopus 로고    scopus 로고
    • Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates
    • Myers JA, Rassen JA, Gagne JJ, et al. Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates. Am J Epidemiol. 2011; 174(11): 1213-22.
    • (2011) Am J Epidemiol , vol.174 , Issue.11 , pp. 1213-1222
    • Myers, J.A.1    Rassen, J.A.2    Gagne, J.J.3
  • 22
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373-83.
    • (1987) J Chronic Dis , vol.40 , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3
  • 23
    • 0027445675 scopus 로고
    • Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives
    • discussion 81-90
    • Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol. 1993; 46: 1075-79, discussion 81-90.
    • (1993) J Clin Epidemiol , vol.46 , pp. 1075-1079
    • Romano, P.S.1    Roos, L.L.2    Jollis, J.G.3
  • 24
    • 79956217851 scopus 로고    scopus 로고
    • A combined comorbidity score predicted mortality in elderly patients better than existing scores
    • Gagne JJ, Glynn RJ, Avorn J, et al. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol. 2011; 64(7): 749-59.
    • (2011) J Clin Epidemiol , vol.64 , Issue.7 , pp. 749-759
    • Gagne, J.J.1    Glynn, R.J.2    Avorn, J.3
  • 25
    • 0035500992 scopus 로고    scopus 로고
    • Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data
    • Schneeweiss S, Seeger JD, Maclure M, et al. Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data. Am J Epidemiol. 2001; 154(9): 854-64.
    • (2001) Am J Epidemiol , vol.154 , Issue.9 , pp. 854-864
    • Schneeweiss, S.1    Seeger, J.D.2    Maclure, M.3
  • 26
    • 67651042983 scopus 로고    scopus 로고
    • Highdimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S, Rassen JA, Glynn RJ, et al. Highdimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009; 20(4): 512-22.
    • (2009) Epidemiology , vol.20 , Issue.4 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3
  • 27
    • 0029270196 scopus 로고
    • Revisiting the behavioral model and access to medical care: Does it matter?
    • Anderson RM. Revisiting the behavioral model and access to medical care: Does it matter? J Health Social Behav. 1995; 36: 1-10.
    • (1995) J Health Social Behav , vol.36 , pp. 1-10
    • Anderson, R.M.1
  • 28
    • 11844249366 scopus 로고    scopus 로고
    • A Medicare database review found that physician preferences increasingly outweighed patient characteristics as determinants of first-time prescriptions for COX-2 inhibitors
    • Schneeweiss S, Glynn RJ, Avorn J, Solomon DH. A Medicare database review found that physician preferences increasingly outweighed patient characteristics as determinants of first-time prescriptions for COX-2 inhibitors. J Clin Epidemiol. 2005; 58: 98-102.
    • (2005) J Clin Epidemiol , vol.58 , pp. 98-102
    • Schneeweiss, S.1    Glynn, R.J.2    Avorn, J.3    Solomon, D.H.4
  • 29
    • 26644473165 scopus 로고    scopus 로고
    • Effect of increased cost-sharing on oral hypoglycemic use in five managed care organizations: How much is too much?
    • Roblin DW, Platt R, Goodman MJ, et al. Effect of increased cost-sharing on oral hypoglycemic use in five managed care organizations: how much is too much? Med Care. 2005; 43: 951-9.
    • (2005) Med Care , vol.43 , pp. 951-959
    • Roblin, D.W.1    Platt, R.2    Goodman, M.J.3
  • 31
    • 0018957326 scopus 로고
    • The effect of misclassification in the presence of covariates
    • Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol. 1980; 112: 564-9.
    • (1980) Am J Epidemiol , vol.112 , pp. 564-569
    • Greenland, S.1
  • 32
    • 0021807618 scopus 로고
    • Confounding and misclassification
    • Greenland S, Robins JM. Confounding and misclassification. Am J Epidemiol. 1985; 122: 495-506.
    • (1985) Am J Epidemiol , vol.122 , pp. 495-506
    • Greenland, S.1    Robins, J.M.2
  • 33
    • 0013916535 scopus 로고
    • Spurious effects from an extraneous variable
    • Bross ID. Spurious effects from an extraneous variable. J Chronic Dis. 1966; 19(6): 637-47.
    • (1966) J Chronic Dis , vol.19 , Issue.6 , pp. 637-647
    • Bross, I.D.1
  • 35
    • 37349057488 scopus 로고    scopus 로고
    • Adjustment for multiple cardiovascular risk factors using a summary risk score
    • Arbogast PG, Kaltenbach L, Ding H, Ray WA. Adjustment for multiple cardiovascular risk factors using a summary risk score. Epidemiology. 2008; 19(1): 30-7.
    • (2008) Epidemiology , vol.19 , Issue.1 , pp. 30-37
    • Arbogast, P.G.1    Kaltenbach, L.2    Ding, H.3    Ray, W.A.4
  • 36
    • 79958845225 scopus 로고    scopus 로고
    • Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples
    • Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011; 173(12): 1404-13.
    • (2011) Am J Epidemiol , vol.173 , Issue.12 , pp. 1404-1413
    • Rassen, J.A.1    Glynn, R.J.2    Brookhart, M.A.3    Schneeweiss, S.4
  • 37
    • 84856034091 scopus 로고    scopus 로고
    • Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system
    • Rassen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacol Drug Saf. 2012; 21(S1): 41-9.
    • (2012) Pharmacol Drug Saf , vol.21 , Issue.S1 , pp. 41-49
    • Rassen, J.A.1    Schneeweiss, S.2
  • 38
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer T, Joshi M, Glynn RJ, et al. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006; 59(5): 437-47.
    • (2006) J Clin Epidemiol , vol.59 , Issue.5 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3
  • 39
    • 77956625112 scopus 로고    scopus 로고
    • A basic study design for expedited safety signal evaluation based on electronic healthcare data
    • Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic healthcare data. Pharmacoepidemiol Drug Saf. 2010; 19: 858-68.
    • (2010) Pharmacoepidemiol Drug Saf , vol.19 , pp. 858-868
    • Schneeweiss, S.1
  • 40
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician 1985; 39: 33-8.
    • (1985) The American Statistician , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 41
    • 77957301897 scopus 로고    scopus 로고
    • Treatment Effects in the Presence of Unmeasured Confounding: Dealing With Observations in the Tails of the Propensity Score Distribution - A Simulation Study
    • Sturmer T, Rothman KJ, Avorn J, Glynn RJ. Treatment Effects in the Presence of Unmeasured Confounding: Dealing With Observations in the Tails of the Propensity Score Distribution - A Simulation Study. Am J Epidemiol 2010; 172: 843-54.
    • (2010) Am J Epidemiol , vol.172 , pp. 843-854
    • Sturmer, T.1    Rothman, K.J.2    Avorn, J.3    Glynn, R.J.4
  • 42
    • 84860597391 scopus 로고    scopus 로고
    • One-to-many propensity score matching in cohort studies
    • Rassen JA, Shelat AA, Myers JA, et al. One-to-many propensity score matching in cohort studies. Pharmacoepidemiol Drug Saf. 2012; 21(S2): 69-80.
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , Issue.S2 , pp. 69-80
    • Rassen, J.A.1    Shelat, A.A.2    Myers, J.A.3
  • 43
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
    • Austin PC
    • Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statist. Med. 2009; 28: 3083-3107.
    • (2009) Statist Med , vol.28 , pp. 3083-3107
  • 45
    • 79958704133 scopus 로고    scopus 로고
    • An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies
    • Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behavioral Research 2011; 46: 399-424.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 46
    • 33745588280 scopus 로고    scopus 로고
    • Interval estimation for treatment effects using propensity score matching
    • Hill J, Reiter JP. Interval estimation for treatment effects using propensity score matching. Statistics in Medicine 2006; 25: 2230-56.
    • (2006) Statistics In Medicine , vol.25 , pp. 2230-2256
    • Hill, J.1    Reiter, J.P.2
  • 47
    • 60849116685 scopus 로고    scopus 로고
    • Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations
    • Austin PC. Some Methods of Propensity-Score Matching had Superior Performance to Others: Results of an Empirical Investigation and Monte Carlo simulations. Biometrical Journal 2009; 51: 171-84.
    • (2009) Biometrical Journal , vol.51 , pp. 171-184
    • Austin, P.C.1
  • 48
    • 0003262670 scopus 로고    scopus 로고
    • Reducing bias in a propensity score matchedpair sample using greedy matching techniques
    • SAS Institute Inc, 2001, Accessed May 8, 2010
    • Parsons L. Reducing bias in a propensity score matchedpair sample using greedy matching techniques. In: Proceedings of the 26th Annual SAS User Group International Conference. SAS Institute Inc, 2001. http://www2.sas.com/proceedings/sugi26/p214-26.pdf. Accessed May 8, 2010.
    • Proceedings of the 26th Annual SAS User Group International Conference
    • Parsons, L.1
  • 50
    • 0034100672 scopus 로고    scopus 로고
    • Substantial Gains in Bias Reduction from Matching with a Variable Number of Controls
    • Ming K, Rosenbaum PR. Substantial Gains in Bias Reduction from Matching with a Variable Number of Controls. Biometric 2000; 56S: 118-24.
    • (2000) Biometric , vol.56 S , pp. 118-124
    • Ming, K.1    Rosenbaum, P.R.2
  • 51
    • 77958523826 scopus 로고    scopus 로고
    • Statistical Criteria for Selecting the Optimal Number of Untreated Subjects Matched to Each Treated Subject When Using Many-to-One Matching on the Propensity Score
    • Austin PC. Statistical Criteria for Selecting the Optimal Number of Untreated Subjects Matched to Each Treated Subject When Using Many-to-One Matching on the Propensity Score. Am J Epidemiol 2010; 172: 1092-7.
    • (2010) Am J Epidemiol , vol.172 , pp. 1092-1097
    • Austin, P.C.1
  • 52
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • Gu XS, Rosenbaum PR. Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics 1993; 2: 405-20.
    • (1993) Journal of Computational and Graphical Statistics , vol.2 , pp. 405-420
    • Gu, X.S.1    Rosenbaum, P.R.2
  • 53
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen BB. Full matching in an observational study of coaching for the SAT. Journal of the American Statistical Association 2004; 99: 609-18.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 54
    • 0000180788 scopus 로고
    • A characterization of optimal designs for observational studies
    • Series B
    • Rosenbaum PR. A characterization of optimal designs for observational studies. Journal of the Royal Statistical Society 1991; Series B 53: 597-610.
    • (1991) Journal of the Royal Statistical Society , vol.53 , pp. 597-610
    • Rosenbaum, P.R.1
  • 55
    • 59649108931 scopus 로고    scopus 로고
    • Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score
    • Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score. Pharmacoepidemiol Drug Saf. 2008; 17: 1218-25.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , pp. 1218-1225
    • Austin, P.C.1
  • 56
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • Imbens G. The role of the propensity score in estimating dose-response functions. Biometrika. 2000; 87: 706-10.
    • (2000) Biometrika , vol.87 , pp. 706-710
    • Imbens, G.1
  • 57
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24: 295-313.
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 58
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. Journal of the American Statistical Association 1984; 79: 516-24.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 59
    • 1542334708 scopus 로고    scopus 로고
    • Propensity score modeling strategies for the causal analysis of observational data
    • Huppler Hullsiek K, Louis TA. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics 2002; 3: 179-93.
    • (2002) Biostatistics , vol.3 , pp. 179-193
    • Huppler Hullsiek, K.1    Louis, T.A.2
  • 60
    • 31344433620 scopus 로고    scopus 로고
    • Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect
    • Kurth T, Walker AM, Glynn RJ, et al. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006; 163(3): 262-70.
    • (2006) Am J Epidemiol , vol.163 , Issue.3 , pp. 262-270
    • Kurth, T.1    Walker, A.M.2    Glynn, R.J.3
  • 61
    • 63149083464 scopus 로고    scopus 로고
    • Different methods of balancing covariates leading to different effect estimates in the presence of effect modification
    • Lunt M, Solomon D, Rothman K, et al. Different methods of balancing covariates leading to different effect estimates in the presence of effect modification. Am J Epidemiol. 2009; 169(7): 909-17.
    • (2009) Am J Epidemiol , vol.169 , Issue.7 , pp. 909-917
    • Lunt, M.1    Solomon, D.2    Rothman, K.3
  • 62
    • 84876105940 scopus 로고    scopus 로고
    • Statistics ready for a revolution: Next generation of statisticians must build tools for massive data sets
    • van der Laan MJ, Rose S. Statistics ready for a revolution: next generation of statisticians must build tools for massive data sets. 2010 Amstat News.
    • (2010) Amstat News
    • van der Laan, M.J.1    Rose, S.2
  • 64
    • 0028885032 scopus 로고
    • Introduction to neural networks
    • Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet 1995; 346(8982): 1075-9.
    • (1995) Lancet , vol.346 , Issue.8982 , pp. 1075-1079
    • Cross, S.S.1    Harrison, R.F.2    Kennedy, R.L.3
  • 65
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt WG. Application of artificial neural networks to clinical medicine. Lancet 1995; 346(8983): 1135-8.
    • (1995) Lancet , vol.346 , Issue.8983 , pp. 1135-1138
    • Baxt, W.G.1
  • 66
    • 0001287271 scopus 로고    scopus 로고
    • Regression Shrinkage and Selection via the Lasso
    • Series B
    • Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society 1996; Series B 58(1): 267-88.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 67
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29: 337-46.
    • (2010) Statistics In Medicine , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 71
    • 84884548406 scopus 로고    scopus 로고
    • StataCorp, Stata Statistical Software: Release 12. College Station, TX: StataCorp LP
    • StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP.
    • (2011)
  • 72
    • 84884580474 scopus 로고    scopus 로고
    • SAS Institute Inc, SAS 9.3. Cary, NC: SAS Institute, Inc
    • SAS Institute Inc. 2011. SAS 9.3. Cary, NC: SAS Institute, Inc.
    • (2011)
  • 73
    • 84884581410 scopus 로고    scopus 로고
    • R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
    • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.
    • (2011)
  • 74
    • 0001093804 scopus 로고
    • Evaluating the Econometric Evaluations of Training Programs with Experimental Data
    • LaLonde R. Evaluating the Econometric Evaluations of Training Programs with Experimental Data. Am Econ Rev 1986; 76: 604-20.
    • (1986) Am Econ Rev , vol.76 , pp. 604-620
    • Lalonde, R.1
  • 75
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in non-experimental studies: Reevaluating the evaluation of training programs
    • Dehejia RH, Wahba S. Causal effects in non-experimental studies: Reevaluating the evaluation of training programs. J Am Statist Assoc 1999; 94: 1053-62.
    • (1999) J Am Statist Assoc , vol.94 , pp. 1053-1062
    • Dehejia, R.H.1    Wahba, S.2
  • 76
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart EA. Matching methods for causal inference: a review and a look forward. Statist Sci 2010; 25(1): 1-21.
    • (2010) Statist Sci , vol.25 , Issue.1 , pp. 1-21
    • Stuart, E.A.1
  • 79
    • 84884573644 scopus 로고    scopus 로고
    • Accessed May 28, 2013, at
    • Kleinman K, Horton NJ. Accessed May 28, 2013, at http://www.math.smith.edu/sasr.
    • Kleinman, K.1    Horton, N.J.2
  • 80
    • 85129712964 scopus 로고    scopus 로고
    • Estimation of average treatment effects based on propensity scores
    • Becker S, Ichino A. Estimation of average treatment effects based on propensity scores. The Stata Journal 2002; 2: 358-77.
    • (2002) The Stata Journal , vol.2 , pp. 358-377
    • Becker, S.1    Ichino, A.2
  • 81
    • 63049138714 scopus 로고    scopus 로고
    • PSAgraphics: An R package to support propensity score analysis
    • Helmreich JE, Pruzek RM. PSAgraphics: An R package to support propensity score analysis. J Stat Softw 2009; 29(6): 1-23.
    • (2009) J Stat Softw , vol.29 , Issue.6 , pp. 1-23
    • Helmreich, J.E.1    Pruzek, R.M.2
  • 83
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods 2004; 9(4): 403-25.
    • (2004) Psychol Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 84
    • 84555170650 scopus 로고    scopus 로고
    • Apples and oranges? Interpretations of risk adjustment and instrumental variable estimates of intended treatment effects using observational data
    • Fang G, Brooks JM, Chrischilles EA. Apples and oranges? Interpretations of risk adjustment and instrumental variable estimates of intended treatment effects using observational data. Am J Epidemiol 2012; 175(1): 60-5.
    • (2012) Am J Epidemiol , vol.175 , Issue.1 , pp. 60-65
    • Fang, G.1    Brooks, J.M.2    Chrischilles, E.A.3
  • 85
    • 38849182246 scopus 로고    scopus 로고
    • Some practical guidance for the implementation of propensity score matching
    • Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score matching. J Econ Surv 2005; 22: 31-72.
    • (2005) J Econ Surv , vol.22 , pp. 31-72
    • Caliendo, M.1    Kopeinig, S.2
  • 86
    • 84884543779 scopus 로고    scopus 로고
    • Performing a 1:N Case-Control Match on Propensity Score. Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Montreal, Canada
    • Parsons LS. Performing a 1:N Case-Control Match on Propensity Score. Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Montreal, Canada. 2004.
    • (2004)
    • Parsons, L.S.1
  • 87
    • 84884549119 scopus 로고    scopus 로고
    • Coca-Perraillon, M. Local and global optimal propensity score matching. SAS Global Forum, Statistics and Data Analysis. Working Paper 185-2007
    • Coca-Perraillon, M. Local and global optimal propensity score matching. SAS Global Forum, Statistics and Data Analysis. Working Paper 185-2007.
  • 88
    • 84884577009 scopus 로고    scopus 로고
    • A Method/Macro Based on Propensity Score and Mahalanobis Distance to Reduce Bias in Treatment Comparison in Observational Study. SAS Technical Report 2006: 1-11. paper PR05
    • Feng W, Jun Y, Xu R. A Method/Macro Based on Propensity Score and Mahalanobis Distance to Reduce Bias in Treatment Comparison in Observational Study. SAS Technical Report 2006: 1-11. paper PR05.
    • Feng, W.1    Jun, Y.2    Xu, R.3
  • 89
    • 84884540853 scopus 로고    scopus 로고
    • SAS Macro. Accessed May 28
    • Kosanke J, Bergstralh E. SAS Macro. Accessed May 28, 2013, at http://mayoresearch.mayo.edu/mayo/research/biostat/upload/vmatch.sas.
    • (2013)
    • Kosanke, J.1    Bergstralh, E.2
  • 91
    • 79958747321 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference
    • Ho DE, Imai K, King G et al. MatchIt: Nonparametric preprocessing for parametric causal inference. J Stat Softw 2011; 42(8): 1-28.
    • (2011) J Stat Softw , vol.42 , Issue.8 , pp. 1-28
    • Ho, D.E.1    Imai, K.2    King, G.3
  • 92
    • 79961226937 scopus 로고    scopus 로고
    • Multivariate and propensity score matching software with automated balance optimization: The Matching package for R
    • Sekhon JS. Multivariate and propensity score matching software with automated balance optimization: the Matching package for R. J Stat Softw 2011; 42(7): 1-52
    • (2011) J Stat Softw , vol.42 , Issue.7 , pp. 1-52
    • Sekhon, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.