메뉴 건너뛰기




Volumn 23, Issue , 2012, Pages

Active learning using smooth relative regret approximations with applications

Author keywords

Active learning; Clustering with side information; Disagreement coefficient; Learning to rank from pairwise preferences; Semi supervised clustering; Smooth relative regret approximation

Indexed keywords

CLUSTERING ALGORITHMS; ESTIMATION; TOOLS;

EID: 84884373590     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (58)
  • 1
    • 84857615668 scopus 로고    scopus 로고
    • An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity
    • N. Ailon. An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity. Journal of Machine Learning Research, 13:137-164, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 137-164
    • Ailon, N.1
  • 3
    • 56349095491 scopus 로고    scopus 로고
    • Aggregating inconsistent information: Ranking and clustering
    • 23:1-23:27, Oct
    • N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering. Journal of the ACM, 55(5):23:1-23:27, Oct. 2008.
    • (2008) Journal of the ACM , vol.55 , Issue.5
    • Ailon, N.1    Charikar, M.2    Newman, A.3
  • 6
    • 34248997891 scopus 로고    scopus 로고
    • Active learning for misspecified generalized linear models
    • B. Scḧolkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
    • F. R. Bach. Active learning for misspecified generalized linear models. In B. Scḧolkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 65-72. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 65-72
    • Bach, F.R.1
  • 8
    • 38049078541 scopus 로고    scopus 로고
    • Margin based active learning
    • M.-F. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning. In COLT, pages 35-50, 2007.
    • (2007) COLT , pp. 35-50
    • Balcan, M.-F.1    Broder, A.Z.2    Zhang, T.3
  • 9
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, pages 45-56, 2008.
    • (2008) COLT , pp. 45-56
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 15
    • 58449083612 scopus 로고    scopus 로고
    • Noisy sorting without resampling
    • M. Braverman and E. Mossel. Noisy sorting without resampling. In SODA, pages 268-276, 2008.
    • (2008) SODA , pp. 268-276
    • Braverman, M.1    Mossel, E.2
  • 16
    • 84864047848 scopus 로고    scopus 로고
    • Faster rates in regression via active learning
    • R. Castro, R. Willett, and R. Nowak. Faster rates in regression via active learning. In NIPS, 2005.
    • (2005) NIPS
    • Castro, R.1    Willett, R.2    Nowak, R.3
  • 18
    • 70049109273 scopus 로고    scopus 로고
    • Linear classification and selective sampling under low noise conditions
    • G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear classification and selective sampling under low noise conditions. In NIPS, pages 249-256, 2008.
    • (2008) NIPS , pp. 249-256
    • Cavallanti, G.1    Cesa-Bianchi, N.2    Gentile, C.3
  • 19
    • 79953223661 scopus 로고    scopus 로고
    • Learning noisy linear classifiers via adaptive and selective sampling
    • G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Learning noisy linear classifiers via adaptive and selective sampling. Machine Learning, 83(1):71-102, 2011.
    • (2011) Machine Learning , vol.83 , Issue.1 , pp. 71-102
    • Cavallanti, G.1    Cesa-Bianchi, N.2    Gentile, C.3
  • 21
    • 17744363129 scopus 로고    scopus 로고
    • Maximizing quadratic programs: Extending grothendieck's inequality
    • IEEE Computer Society
    • M. Charikar and A. Wirth. Maximizing quadratic programs: Extending grothendieck's inequality. In FOCS, pages 54-60. IEEE Computer Society, 2004.
    • (2004) FOCS , pp. 54-60
    • Charikar, M.1    Wirth, A.2
  • 23
    • 77954412721 scopus 로고    scopus 로고
    • Ordering by weighted number of wins gives a good ranking for weighted tournaments
    • 55:1-55:13, July
    • D. Coppersmith, L. K. Fleischer, and A. Rurda. Ordering by weighted number of wins gives a good ranking for weighted tournaments. ACM Trans. Algorithms, 6:55:1-55:13, July 2010.
    • (2010) ACM Trans. Algorithms , vol.6
    • Coppersmith, D.1    Fleischer, L.K.2    Rurda, A.3
  • 24
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, 2005.
    • (2005) NIPS
    • Dasgupta, S.1
  • 25
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
    • (2008) ICML , pp. 208-215
    • Dasgupta, S.1    Hsu, D.2
  • 26
    • 56449123291 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
    • (2007) NIPS
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 29
    • 77953500857 scopus 로고    scopus 로고
    • On the foundations of noise-free selective classification
    • R. El-Yaniv and Y. Wiener. On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11:1605-1641, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1605-1641
    • El-Yaniv, R.1    Wiener, Y.2
  • 31
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • September
    • Y. Freund, S. H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, September 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Seung, S.H.2    Shamir, E.3    Tishby, N.4
  • 32
    • 43049140270 scopus 로고    scopus 로고
    • Correlation clustering with a fixed number of clusters
    • I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. Theory of Computing, 2(1):249-266, 2006.
    • (2006) Theory of Computing , vol.2 , Issue.1 , pp. 249-266
    • Giotis, I.1    Guruswami, V.2
  • 33
    • 49449095305 scopus 로고    scopus 로고
    • Distribution-free property-testing
    • S. Halevy and E. Kushilevitz. Distribution-free property-testing. SIAM J. Comput., 37(4):1107- 1138, 2007.
    • (2007) SIAM J. Comput , vol.37 , Issue.4 , pp. 1107-1138
    • Halevy, S.1    Kushilevitz, E.2
  • 34
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
    • (2007) ICML
    • Hanneke, S.1
  • 35
    • 84898062667 scopus 로고    scopus 로고
    • Adaptive rates of convergence in active learning
    • S. Hanneke. Adaptive rates of convergence in active learning. In COLT, 2009.
    • (2009) COLT
    • Hanneke, S.1
  • 36
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. Annals of Statistics, 39(1):333-361, 2011.
    • (2011) Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 38
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Sept
    • D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Control, 100(1):78-150, Sept. 1992.
    • (1992) Information and Control , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 39
    • 85162426723 scopus 로고    scopus 로고
    • Active ranking using pairwise comparisons
    • K. G. Jamieson and R. Nowak. Active ranking using pairwise comparisons. In NIPS 24, pages 2240-2248, 2011.
    • (2011) NIPS , vol.24 , pp. 2240-2248
    • Jamieson, K.G.1    Nowak, R.2
  • 40
    • 33750727664 scopus 로고    scopus 로고
    • Active learning in the non-realizable case
    • M. K̈äarïainen. Active learning in the non-realizable case. In ALT, pages 63-77, 2006.
    • (2006) ALT , pp. 63-77
    • Äarïainen, M.K.1
  • 42
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In ICML, pages 307-314, 2002.
    • (2002) ICML , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 43
    • 78649426154 scopus 로고    scopus 로고
    • Rademacher complexities and bounding the excess risk in active learning
    • V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning Research, 11:2457-2485, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2457-2485
    • Koltchinskii, V.1
  • 45
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. Annals of Statistics, 27:1808- 1829, 1999.
    • (1999) Annals of Statistics , vol.27 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 47
    • 80053439330 scopus 로고    scopus 로고
    • Better algorithms for selective sampling
    • F. Orabona and N. Cesa-Bianchi. Better algorithms for selective sampling. In ICML, pages 433- 440, 2011.
    • (2011) ICML , pp. 433-440
    • Orabona, F.1    Cesa-Bianchi, N.2
  • 48
    • 79952387636 scopus 로고    scopus 로고
    • Ranking from pairs and triplets: Information quality, evaluation methods and query complexity
    • K. Radinsky and N. Ailon. Ranking from pairs and triplets: Information quality, evaluation methods and query complexity. In WSDM, pages 105-114, 2011.
    • (2011) WSDM , pp. 105-114
    • Radinsky, K.1    Ailon, N.2
  • 51
    • 4544382534 scopus 로고    scopus 로고
    • Cluster graph modification problems
    • nov
    • R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied Math, 144:173-182, nov 2004.
    • (2004) Discrete Applied Math , vol.144 , pp. 173-182
    • Shamir, R.1    Sharan, R.2    Tsur, D.3
  • 52
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • M. Sugiyama. Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research, 7:141-166, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 53
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32: 135-166, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 55
    • 80052202374 scopus 로고    scopus 로고
    • Smoothness, disagreement coefficient, and the label complexity of agnostic active learning
    • L. Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active learning. Journal of Machine Learning Research, 12:2269-2292, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2269-2292
    • Wang, L.1
  • 57
    • 78249243073 scopus 로고    scopus 로고
    • Bayesian active learning using arbitrary binary valued queries
    • L. Yang, S. Hanneke, and J. G. Carbonell. Bayesian active learning using arbitrary binary valued queries. In ALT, pages 50-58, 2010.
    • (2010) ALT , pp. 50-58
    • Yang, L.1    Hanneke, S.2    Carbonell, J.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.