-
1
-
-
84857615668
-
An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity
-
N. Ailon. An active learning algorithm for ranking from pairwise preferences with an almost optimal query complexity. Journal of Machine Learning Research, 13:137-164, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 137-164
-
-
Ailon, N.1
-
2
-
-
34948817828
-
Estimating the distance to a monotone function
-
N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a monotone function. Random Struct. Algorithms, 31(3):371-383, 2007.
-
(2007)
Random Struct. Algorithms
, vol.31
, Issue.3
, pp. 371-383
-
-
Ailon, N.1
Chazelle, B.2
Comandur, S.3
Liu, D.4
-
3
-
-
56349095491
-
Aggregating inconsistent information: Ranking and clustering
-
23:1-23:27, Oct
-
N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering. Journal of the ACM, 55(5):23:1-23:27, Oct. 2008.
-
(2008)
Journal of the ACM
, vol.55
, Issue.5
-
-
Ailon, N.1
Charikar, M.2
Newman, A.3
-
6
-
-
34248997891
-
Active learning for misspecified generalized linear models
-
B. Scḧolkopf, J. Platt, and T. Hoffman, editors, MIT Press, Cambridge, MA
-
F. R. Bach. Active learning for misspecified generalized linear models. In B. Scḧolkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 65-72. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 65-72
-
-
Bach, F.R.1
-
9
-
-
84860640656
-
The true sample complexity of active learning
-
M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, pages 45-56, 2008.
-
(2008)
COLT
, pp. 45-56
-
-
Balcan, M.-F.1
Hanneke, S.2
Wortman, J.3
-
12
-
-
0032728081
-
Clustering gene expression patterns
-
A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of Computational Biology, 6(3/4):281-297, 1999.
-
(1999)
Journal of Computational Biology
, vol.6
, Issue.3-4
, pp. 281-297
-
-
Ben-Dor, A.1
Shamir, R.2
Yakhini, Z.3
-
15
-
-
58449083612
-
Noisy sorting without resampling
-
M. Braverman and E. Mossel. Noisy sorting without resampling. In SODA, pages 268-276, 2008.
-
(2008)
SODA
, pp. 268-276
-
-
Braverman, M.1
Mossel, E.2
-
16
-
-
84864047848
-
Faster rates in regression via active learning
-
R. Castro, R. Willett, and R. Nowak. Faster rates in regression via active learning. In NIPS, 2005.
-
(2005)
NIPS
-
-
Castro, R.1
Willett, R.2
Nowak, R.3
-
18
-
-
70049109273
-
Linear classification and selective sampling under low noise conditions
-
G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear classification and selective sampling under low noise conditions. In NIPS, pages 249-256, 2008.
-
(2008)
NIPS
, pp. 249-256
-
-
Cavallanti, G.1
Cesa-Bianchi, N.2
Gentile, C.3
-
19
-
-
79953223661
-
Learning noisy linear classifiers via adaptive and selective sampling
-
G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Learning noisy linear classifiers via adaptive and selective sampling. Machine Learning, 83(1):71-102, 2011.
-
(2011)
Machine Learning
, vol.83
, Issue.1
, pp. 71-102
-
-
Cavallanti, G.1
Cesa-Bianchi, N.2
Gentile, C.3
-
20
-
-
80053151380
-
Active learning on trees and graphs
-
N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Active learning on trees and graphs. In COLT, pages 320-332, 2010.
-
(2010)
COLT
, pp. 320-332
-
-
Cesa-Bianchi, N.1
Gentile, C.2
Vitale, F.3
Zappella, G.4
-
21
-
-
17744363129
-
Maximizing quadratic programs: Extending grothendieck's inequality
-
IEEE Computer Society
-
M. Charikar and A. Wirth. Maximizing quadratic programs: Extending grothendieck's inequality. In FOCS, pages 54-60. IEEE Computer Society, 2004.
-
(2004)
FOCS
, pp. 54-60
-
-
Charikar, M.1
Wirth, A.2
-
23
-
-
77954412721
-
Ordering by weighted number of wins gives a good ranking for weighted tournaments
-
55:1-55:13, July
-
D. Coppersmith, L. K. Fleischer, and A. Rurda. Ordering by weighted number of wins gives a good ranking for weighted tournaments. ACM Trans. Algorithms, 6:55:1-55:13, July 2010.
-
(2010)
ACM Trans. Algorithms
, vol.6
-
-
Coppersmith, D.1
Fleischer, L.K.2
Rurda, A.3
-
24
-
-
71049162986
-
Coarse sample complexity bounds for active learning
-
S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, 2005.
-
(2005)
NIPS
-
-
Dasgupta, S.1
-
25
-
-
56449108037
-
Hierarchical sampling for active learning
-
S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
-
(2008)
ICML
, pp. 208-215
-
-
Dasgupta, S.1
Hsu, D.2
-
26
-
-
56449123291
-
A general agnostic active learning algorithm
-
S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS, 2007.
-
(2007)
NIPS
-
-
Dasgupta, S.1
Hsu, D.2
Monteleoni, C.3
-
27
-
-
84892318649
-
-
Springer-Verlag, Berlin, 3rd edition
-
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational geometry: Algorithms and applications. Springer-Verlag, Berlin, 3rd edition, 2008.
-
(2008)
Computational Geometry: Algorithms and Applications
-
-
De Berg, M.1
Cheong, O.2
Van Kreveld, M.3
Overmars, M.4
-
29
-
-
77953500857
-
On the foundations of noise-free selective classification
-
R. El-Yaniv and Y. Wiener. On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11:1605-1641, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1605-1641
-
-
El-Yaniv, R.1
Wiener, Y.2
-
30
-
-
84862284226
-
Active clustering: Robust and efficient hierarchical clustering using adaptively selected similarities
-
B. Eriksson, G. Dasarathy, A. Singh, and R. D. Nowak. Active clustering: Robust and efficient hierarchical clustering using adaptively selected similarities. Journal of Machine Learning Research - Proceedings Track, 15:260-268, 2011.
-
(2011)
Journal of Machine Learning Research - Proceedings Track
, vol.15
, pp. 260-268
-
-
Eriksson, B.1
Dasarathy, G.2
Singh, A.3
Nowak, R.D.4
-
31
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
September
-
Y. Freund, S. H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, September 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, S.H.2
Shamir, E.3
Tishby, N.4
-
32
-
-
43049140270
-
Correlation clustering with a fixed number of clusters
-
I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. Theory of Computing, 2(1):249-266, 2006.
-
(2006)
Theory of Computing
, vol.2
, Issue.1
, pp. 249-266
-
-
Giotis, I.1
Guruswami, V.2
-
33
-
-
49449095305
-
Distribution-free property-testing
-
S. Halevy and E. Kushilevitz. Distribution-free property-testing. SIAM J. Comput., 37(4):1107- 1138, 2007.
-
(2007)
SIAM J. Comput
, vol.37
, Issue.4
, pp. 1107-1138
-
-
Halevy, S.1
Kushilevitz, E.2
-
34
-
-
56449094315
-
A bound on the label complexity of agnostic active learning
-
S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
-
(2007)
ICML
-
-
Hanneke, S.1
-
35
-
-
84898062667
-
Adaptive rates of convergence in active learning
-
S. Hanneke. Adaptive rates of convergence in active learning. In COLT, 2009.
-
(2009)
COLT
-
-
Hanneke, S.1
-
36
-
-
79551594780
-
Rates of convergence in active learning
-
S. Hanneke. Rates of convergence in active learning. Annals of Statistics, 39(1):333-361, 2011.
-
(2011)
Annals of Statistics
, vol.39
, Issue.1
, pp. 333-361
-
-
Hanneke, S.1
-
38
-
-
0002192516
-
Decision theoretic generalizations of the PAC model for neural net and other learning applications
-
Sept
-
D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Control, 100(1):78-150, Sept. 1992.
-
(1992)
Information and Control
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussler, D.1
-
39
-
-
85162426723
-
Active ranking using pairwise comparisons
-
K. G. Jamieson and R. Nowak. Active ranking using pairwise comparisons. In NIPS 24, pages 2240-2248, 2011.
-
(2011)
NIPS
, vol.24
, pp. 2240-2248
-
-
Jamieson, K.G.1
Nowak, R.2
-
40
-
-
33750727664
-
Active learning in the non-realizable case
-
M. K̈äarïainen. Active learning in the non-realizable case. In ALT, pages 63-77, 2006.
-
(2006)
ALT
, pp. 63-77
-
-
Äarïainen, M.K.1
-
42
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In ICML, pages 307-314, 2002.
-
(2002)
ICML
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.D.3
-
43
-
-
78649426154
-
Rademacher complexities and bounding the excess risk in active learning
-
V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning Research, 11:2457-2485, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2457-2485
-
-
Koltchinskii, V.1
-
47
-
-
80053439330
-
Better algorithms for selective sampling
-
F. Orabona and N. Cesa-Bianchi. Better algorithms for selective sampling. In ICML, pages 433- 440, 2011.
-
(2011)
ICML
, pp. 433-440
-
-
Orabona, F.1
Cesa-Bianchi, N.2
-
48
-
-
79952387636
-
Ranking from pairs and triplets: Information quality, evaluation methods and query complexity
-
K. Radinsky and N. Ailon. Ranking from pairs and triplets: Information quality, evaluation methods and query complexity. In WSDM, pages 105-114, 2011.
-
(2011)
WSDM
, pp. 105-114
-
-
Radinsky, K.1
Ailon, N.2
-
52
-
-
30744458353
-
Active learning in approximately linear regression based on conditional expectation of generalization error
-
M. Sugiyama. Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research, 7:141-166, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 141-166
-
-
Sugiyama, M.1
-
53
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32: 135-166, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
54
-
-
84857556524
-
Active clustering of biological sequences
-
K. Voevodski, M.-F. Balcan, H. R̈oglin, S.-H. Teng, and Y. Xia. Active clustering of biological sequences. Journal of Machine Learning Research, 13:203-225, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 203-225
-
-
Voevodski, K.1
Balcan, M.-F.2
R̈oglin, H.3
Teng, S.-H.4
Xia, Y.5
-
55
-
-
80052202374
-
Smoothness, disagreement coefficient, and the label complexity of agnostic active learning
-
L. Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active learning. Journal of Machine Learning Research, 12:2269-2292, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2269-2292
-
-
Wang, L.1
-
56
-
-
85133386144
-
Distance metric learning, with application to clustering with side-information
-
MIT Press
-
E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to clustering with side-information. In Advances in Neural Information Processing Systems 15, pages 505-512. MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
-
57
-
-
78249243073
-
Bayesian active learning using arbitrary binary valued queries
-
L. Yang, S. Hanneke, and J. G. Carbonell. Bayesian active learning using arbitrary binary valued queries. In ALT, pages 50-58, 2010.
-
(2010)
ALT
, pp. 50-58
-
-
Yang, L.1
Hanneke, S.2
Carbonell, J.G.3
|