메뉴 건너뛰기




Volumn , Issue , 2009, Pages 249-256

Linear classification and selective sampling under low noise conditions

Author keywords

[No Author keywords available]

Indexed keywords

RISK ASSESSMENT;

EID: 70049109273     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (26)
  • 1
    • 84943254140 scopus 로고    scopus 로고
    • Queries revisited
    • Algorithmic Learning Theory
    • D. Angluin. Queries revisited. In 12th ALT, pages 12-31. Springer, 2001. (Pubitemid 33371210)
    • (2001) Lecture Notes in Computer Science , Issue.2225 , pp. 12-31
    • Angluin, D.1
  • 2
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • DOI 10.1023/A:1010896012157
    • K.S. Azoury and M.K.Warmuth. Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3):211-246, 2001. (Pubitemid 32471833)
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 4
    • 38049078541 scopus 로고    scopus 로고
    • Margin-based active learning
    • Springer
    • M.F. Balcan, A. Broder, and T. Zhang. Margin-based active learning. In 20th COLT, pages 35-50. Springer, 2007.
    • (2007) 20th COLT , pp. 35-50
    • Balcan, M.F.1    Broder, A.2    Zhang, T.3
  • 6
    • 33847676413 scopus 로고    scopus 로고
    • Statistical properties of kernel principal component analysis
    • DOI 10.1007/s10994-006-6895-9, Special Issue on Learning Theory
    • G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel principal component analysis. Machine Learning, 66:259-294, 2007. (Pubitemid 46360614)
    • (2007) Machine Learning , vol.66 , Issue.2-3 , pp. 259-294
    • Blanchard, G.1    Bousquet, O.2    Zwald, L.3
  • 7
    • 33750713303 scopus 로고    scopus 로고
    • Accurate error bounds for the eigenvalues of the kernel matrix
    • M.L. Braun. Accurate error bounds for the eigenvalues of the kernel matrix. JMLR, 7:2303-2328, 2006. (Pubitemid 44708008)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2303-2328
    • Braun, M.L.1
  • 8
    • 0038399423 scopus 로고    scopus 로고
    • Query learning with large margin classifiers
    • Morgan Kaufmann
    • C. Campbell, N. Cristianini, and A. Smola. Query learning with large margin classifiers. In 17th ICML, pages 111-118. Morgan Kaufmann, 2000.
    • (2000) 17th ICML , pp. 111-118
    • Campbell, C.1    Cristianini, N.2    Smola, A.3
  • 9
    • 43749112531 scopus 로고    scopus 로고
    • Minimax bounds for active learning
    • To appear
    • R. Castro and R.D. Nowak. Minimax bounds for active learning. IEEE Trans. IT, 2008. To appear.
    • (2008) IEEE Trans. IT
    • Castro, R.1    Nowak, R.D.2
  • 10
    • 9444239141 scopus 로고    scopus 로고
    • Learning probabilistic linear-threshold classifiers via selective sampling
    • Learning Theory and Kernel Machines
    • N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning probabilistic linear-threshold classifiers via selective sampling. In 16th COLT, pages 373-387. Springer, 2003. (Pubitemid 37053217)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 373-387
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 13
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 14
    • 0003283879 scopus 로고
    • Training connectionist networks with queries and selective sampling
    • MIT Press
    • R. Cohn, L. Atlas, and R. Ladner. Training connectionist networks with queries and selective sampling. In NIPS 2. MIT Press, 1990.
    • (1990) NIPS , vol.2
    • Cohn, R.1    Atlas, L.2    Ladner, R.3
  • 15
    • 85161987046 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm
    • MIT Press
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In NIPS 20, pages 353-360. MIT Press, 2008.
    • (2008) NIPS , vol.20 , pp. 353-360
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 16
    • 26944439047 scopus 로고    scopus 로고
    • Analysis of Perceptron-based active learning
    • Springer
    • S. Dasgupta, A. T. Kalai, and C.Monteleoni. Analysis of Perceptron-based active learning. In 18th COLT, pages 249-263. Springer, 2005.
    • (2005) 18th COLT , pp. 249-263
    • Dasgupta, S.1    Kalai, A.T.2    Monteleoni, C.3
  • 17
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2/3):133-168, 1997. (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 19
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, and A. Smola, editors. MIT Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Joachims, T.1
  • 20
    • 35148813087 scopus 로고    scopus 로고
    • Practical online active learning for classification
    • IEEE Computer Society Press
    • C. Monteleoni and M. Kääriäinen. Practical online active learning for classification. In 24th IEEE CVPR, pages 249-263. IEEE Computer Society Press, 2007.
    • (2007) 24th IEEE CVPR , pp. 249-263
    • Monteleoni, C.1    Kääriäinen, M.2
  • 22
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using gaussian kernels
    • I. Steinwart and C. Scovel Fast Rates for Support Vector Machines using Gaussian Kernels Annals of Statistics, 35: 575-607, 2007.
    • (2007) Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 23
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Morgan Kaufmann
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In 17th ICML, pages 999-1006. Morgan Kaufmann, 2000.
    • (2000) 17th ICML , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 24
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • DOI 10.1214/aos/1079120131
    • A. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004. (Pubitemid 41449306)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 135-166
    • Tsybakov, A.B.1
  • 25
    • 0035413537 scopus 로고    scopus 로고
    • Competitive on-line statistics
    • V. Vovk. Competitive on-line statistics. International Statistical Review, 69:213-248, 2001.
    • (2001) International Statistical Review , vol.69 , pp. 213-248
    • Vovk, V.1
  • 26
    • 33750594552 scopus 로고    scopus 로고
    • Online regularized classification algorithms
    • DOI 10.1109/TIT.2006.883632
    • Y. Ying and D.X. Zhou. Online regularized classification algorithms. IEEE Transactions on Information Theory, 52:4775-4788, 2006. (Pubitemid 44680574)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.11 , pp. 4775-4788
    • Ying, Y.1    Zhou, D.-X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.