메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 60-68

Recent developments in microfluidic large scale integration

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED FLUIDICS; CHIP ARCHITECTURE; FLUIDIC NETWORKS; MICRO-MECHANICAL; MICROFLUIDIC CHIP; MICROFLUIDIC LARGE-SCALE INTEGRATION; MULTILAYER SOFT LITHOGRAPHY; TECHNOLOGICAL ADVANCES;

EID: 84884226093     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2013.08.014     Document Type: Review
Times cited : (86)

References (62)
  • 1
    • 0037131390 scopus 로고    scopus 로고
    • Microfluidic large-scale integration
    • Thorsen T., Maerkl S.J., Quake S.R. Microfluidic large-scale integration. Science 2002, 298:580-584.
    • (2002) Science , vol.298 , pp. 580-584
    • Thorsen, T.1    Maerkl, S.J.2    Quake, S.R.3
  • 2
    • 1542375006 scopus 로고    scopus 로고
    • Solvent-resistant photocurable "liquid teflon" for microfluidic device fabrication
    • Rolland J.P., et al. Solvent-resistant photocurable "liquid teflon" for microfluidic device fabrication. J Am Chem Soc 2004, 126:2322-2323.
    • (2004) J Am Chem Soc , vol.126 , pp. 2322-2323
    • Rolland, J.P.1
  • 3
    • 52649100127 scopus 로고    scopus 로고
    • Electronic control of elastomeric microfluidic circuits with shape memory actuators
    • Vyawahare S., et al. Electronic control of elastomeric microfluidic circuits with shape memory actuators. Lab Chip 2008, 8:1530-1535.
    • (2008) Lab Chip , vol.8 , pp. 1530-1535
    • Vyawahare, S.1
  • 4
    • 34347256054 scopus 로고    scopus 로고
    • Microfluidic large-scale integration: the evolution of design rules for biological automation
    • Melin J., Quake S.R. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 2007, 36:213-231.
    • (2007) Annu Rev Biophys Biomol Struct , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 5
    • 77952527887 scopus 로고    scopus 로고
    • Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications
    • Mark D., et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 2010, 39:1153-1182.
    • (2010) Chem Soc Rev , vol.39 , pp. 1153-1182
    • Mark, D.1
  • 6
    • 79956341553 scopus 로고    scopus 로고
    • Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication
    • Devaraju N.S.G.K., Unger M.A. Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication. Lab Chip 2011, 11:1962-1967.
    • (2011) Lab Chip , vol.11 , pp. 1962-1967
    • Devaraju, N.S.G.K.1    Unger, M.A.2
  • 7
    • 80051748178 scopus 로고    scopus 로고
    • Chemically resistant microfluidic valves from Viton (R) membranes bonded to COC and PMMA
    • Ogilvie I.R.G., et al. Chemically resistant microfluidic valves from Viton (R) membranes bonded to COC and PMMA. Lab Chip 2011, 11:2455-2459.
    • (2011) Lab Chip , vol.11 , pp. 2455-2459
    • Ogilvie, I.R.G.1
  • 8
    • 79952637840 scopus 로고    scopus 로고
    • Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications
    • Lei Y., et al. Studies on Parylene C-caulked PDMS (pcPDMS) for low permeability required microfluidics applications. Lab Chip 2011, 11:1385-1388.
    • (2011) Lab Chip , vol.11 , pp. 1385-1388
    • Lei, Y.1
  • 9
    • 78049508638 scopus 로고    scopus 로고
    • Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications
    • Gomez-Sjoberg R., et al. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal Chem 2010, 82:8954-8960.
    • (2010) Anal Chem , vol.82 , pp. 8954-8960
    • Gomez-Sjoberg, R.1
  • 10
    • 65349179603 scopus 로고    scopus 로고
    • Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics
    • Chang M.-P., Maharbiz M.M. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics. Lab Chip 2009, 9:1274-1281.
    • (2009) Lab Chip , vol.9 , pp. 1274-1281
    • Chang, M.-P.1    Maharbiz, M.M.2
  • 11
    • 70149084095 scopus 로고    scopus 로고
    • Oscillating magnetic field-actuated microvalves for micro- and nanofluidics
    • Ghosh S., et al. Oscillating magnetic field-actuated microvalves for micro- and nanofluidics. J Phys D: Appl Phys 2009, 42.
    • (2009) J Phys D: Appl Phys , vol.42
    • Ghosh, S.1
  • 12
    • 57449097777 scopus 로고    scopus 로고
    • Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices
    • Hulme S.E., Shevkoplyas S.S., Whitesides G.M. Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab Chip 2009, 9:79-86.
    • (2009) Lab Chip , vol.9 , pp. 79-86
    • Hulme, S.E.1    Shevkoplyas, S.S.2    Whitesides, G.M.3
  • 13
    • 8644241679 scopus 로고    scopus 로고
    • Computerized microfluidic cell culture using elastomeric channels and Braille displays
    • Gu W., et al. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A 2004, 101:15861-15866.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 15861-15866
    • Gu, W.1
  • 14
    • 84878092412 scopus 로고    scopus 로고
    • Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves
    • Neumann C., et al. Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluidics 2013, 14:177-186.
    • (2013) Microfluid Nanofluidics , vol.14 , pp. 177-186
    • Neumann, C.1
  • 15
    • 46149108815 scopus 로고    scopus 로고
    • Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer
    • Chen G., Svec F., Knapp D.R. Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 2008, 8:1198-1204.
    • (2008) Lab Chip , vol.8 , pp. 1198-1204
    • Chen, G.1    Svec, F.2    Knapp, D.R.3
  • 16
    • 84867533019 scopus 로고    scopus 로고
    • Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography
    • Devaraju N.S.G.K., Unger M.A. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography. Lab Chip 2012, 12:4809-4815.
    • (2012) Lab Chip , vol.12 , pp. 4809-4815
    • Devaraju, N.S.G.K.1    Unger, M.A.2
  • 17
    • 79551625865 scopus 로고    scopus 로고
    • High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane
    • Mosadegh B., et al. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane. Lab Chip 2011, 11:738-742.
    • (2011) Lab Chip , vol.11 , pp. 738-742
    • Mosadegh, B.1
  • 18
    • 65649089786 scopus 로고    scopus 로고
    • Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization
    • Vanapalli S.A., et al. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization. Lab Chip 2009, 9:1461-1467.
    • (2009) Lab Chip , vol.9 , pp. 1461-1467
    • Vanapalli, S.A.1
  • 19
    • 80052174976 scopus 로고    scopus 로고
    • High-throughput microfluidic single-cell RT-qPCR
    • White A.K., et al. High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A 2011, 108:13999-14004.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 13999-14004
    • White, A.K.1
  • 20
    • 84876946390 scopus 로고    scopus 로고
    • Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control
    • Yu F., Horowitz M.A., Quake S.R. Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contamination-free flow control. Lab Chip 2013, 13:1911-1918.
    • (2013) Lab Chip , vol.13 , pp. 1911-1918
    • Yu, F.1    Horowitz, M.A.2    Quake, S.R.3
  • 21
    • 61849137271 scopus 로고    scopus 로고
    • Frequency-specific flow control in microfluidic circuits with passive elastomeric features
    • Leslie D.C., et al. Frequency-specific flow control in microfluidic circuits with passive elastomeric features. Nat Phys 2009, 5:231-235.
    • (2009) Nat Phys , vol.5 , pp. 231-235
    • Leslie, D.C.1
  • 22
    • 44249122424 scopus 로고    scopus 로고
    • Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes
    • Jung S.-Y., Liu Y., Collier C.P. Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes. Langmuir 2008, 24:4439-4442.
    • (2008) Langmuir , vol.24 , pp. 4439-4442
    • Jung, S.-Y.1    Liu, Y.2    Collier, C.P.3
  • 23
    • 84874622530 scopus 로고    scopus 로고
    • Microfluidic integration of parallel solid-phase liquid chromatography
    • Huft J., Haynes C.A., Hansen C.L. Microfluidic integration of parallel solid-phase liquid chromatography. Anal Chem 2013, 85:2999-3005.
    • (2013) Anal Chem , vol.85 , pp. 2999-3005
    • Huft, J.1    Haynes, C.A.2    Hansen, C.L.3
  • 24
    • 84874873058 scopus 로고    scopus 로고
    • Flow-switching allows independently programmable, extremely stable, high-throughput diffusion-based gradients
    • Frank T., Tay S. Flow-switching allows independently programmable, extremely stable, high-throughput diffusion-based gradients. Lab Chip 2013, 13:1273-1281.
    • (2013) Lab Chip , vol.13 , pp. 1273-1281
    • Frank, T.1    Tay, S.2
  • 25
    • 58649091947 scopus 로고    scopus 로고
    • A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates
    • Cooksey G.A., Sip C.G., Folch A. A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 2009, 9:417-426.
    • (2009) Lab Chip , vol.9 , pp. 417-426
    • Cooksey, G.A.1    Sip, C.G.2    Folch, A.3
  • 26
    • 78751502855 scopus 로고    scopus 로고
    • High-throughput tracking of single yeast cells in a microfluidic imaging matrix
    • Falconnet D., et al. High-throughput tracking of single yeast cells in a microfluidic imaging matrix. Lab Chip 2011, 11:466-473.
    • (2011) Lab Chip , vol.11 , pp. 466-473
    • Falconnet, D.1
  • 27
    • 77956124720 scopus 로고    scopus 로고
    • Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections
    • Huft J., et al. Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections. Lab Chip 2010, 10:2358-2365.
    • (2010) Lab Chip , vol.10 , pp. 2358-2365
    • Huft, J.1
  • 28
    • 0037378989 scopus 로고    scopus 로고
    • Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices
    • Grover W.H., et al. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuat B: Chem 2003, 89:315-323.
    • (2003) Sens Actuat B: Chem , vol.89 , pp. 315-323
    • Grover, W.H.1
  • 29
    • 77949378006 scopus 로고    scopus 로고
    • A digital microfluidic platform for the automation of quantitative biomolecular assays
    • Jensen E.C., Bhat B.P., Mathies R.A. A digital microfluidic platform for the automation of quantitative biomolecular assays. Lab Chip 2010, 10:685-691.
    • (2010) Lab Chip , vol.10 , pp. 685-691
    • Jensen, E.C.1    Bhat, B.P.2    Mathies, R.A.3
  • 30
    • 58149511999 scopus 로고    scopus 로고
    • Integrated microfluidic bioprocessor for single-cell gene expression analysis
    • Toriello N.M., et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 2008, 105:20173-20178.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20173-20178
    • Toriello, N.M.1
  • 31
    • 79959830458 scopus 로고    scopus 로고
    • High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays
    • 581-U93
    • Lecault V., et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 2011, 8. 581-U93.
    • (2011) Nat Methods , vol.8
    • Lecault, V.1
  • 32
    • 84861212790 scopus 로고    scopus 로고
    • A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities
    • Leung K., et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 2012, 109:7665-7670.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 7665-7670
    • Leung, K.1
  • 33
    • 84864244167 scopus 로고    scopus 로고
    • Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves
    • Araci I.E., Quake S.R. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 2012, 12:2803-2806.
    • (2012) Lab Chip , vol.12 , pp. 2803-2806
    • Araci, I.E.1    Quake, S.R.2
  • 34
    • 79954433708 scopus 로고    scopus 로고
    • A software-programmable microfluidic device for automated biology
    • Fidalgo L.M., Maerkl S.J. A software-programmable microfluidic device for automated biology. Lab Chip 2011, 11:1612-1619.
    • (2011) Lab Chip , vol.11 , pp. 1612-1619
    • Fidalgo, L.M.1    Maerkl, S.J.2
  • 35
    • 77950516730 scopus 로고    scopus 로고
    • Static control logic for microfluidic devices using pressure-gain valves
    • Weaver J.A., et al. Static control logic for microfluidic devices using pressure-gain valves. Nat Phys 2010, 6:218-223.
    • (2010) Nat Phys , vol.6 , pp. 218-223
    • Weaver, J.A.1
  • 36
    • 80051607409 scopus 로고    scopus 로고
    • Next-generation integrated microfluidic circuits
    • Mosadegh B., et al. Next-generation integrated microfluidic circuits. Lab Chip 2011, 11:2813-2818.
    • (2011) Lab Chip , vol.11 , pp. 2813-2818
    • Mosadegh, B.1
  • 37
    • 84867071980 scopus 로고    scopus 로고
    • Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers
    • Kim S.-J., et al. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers. Small 2012, 8:2925-2934.
    • (2012) Small , vol.8 , pp. 2925-2934
    • Kim, S.-J.1
  • 38
    • 70350451930 scopus 로고    scopus 로고
    • Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems
    • Rhee M., Burns M.A. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 2009, 9:3131-3143.
    • (2009) Lab Chip , vol.9 , pp. 3131-3143
    • Rhee, M.1    Burns, M.A.2
  • 39
    • 84870938177 scopus 로고    scopus 로고
    • Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing
    • Jensen E.C., et al. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing. Lab Chip 2013, 13:288-296.
    • (2013) Lab Chip , vol.13 , pp. 288-296
    • Jensen, E.C.1
  • 47
    • 84877743430 scopus 로고    scopus 로고
    • A clique-based approach to find binding and scheduling result in flow-based microfluidic biochips
    • Dinh T.A., et al. A clique-based approach to find binding and scheduling result in flow-based microfluidic biochips. Proceedings of the Asia and South Pacific Design Automation Conference 2013, 199-204.
    • (2013) Proceedings of the Asia and South Pacific Design Automation Conference , pp. 199-204
    • Dinh, T.A.1
  • 48
    • 84877763499 scopus 로고    scopus 로고
    • A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips
    • Tseng K.-H., et al. A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips. Proceedings of the Asia and South Pacific Design Automation Conference 2013, 213-218.
    • (2013) Proceedings of the Asia and South Pacific Design Automation Conference , pp. 213-218
    • Tseng, K.-H.1
  • 49
    • 84875832302 scopus 로고    scopus 로고
    • A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization
    • Tseng K.-H., et al. A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization. Proceedings of the International Symposium on Physical Design 2013, 123-129.
    • (2013) Proceedings of the International Symposium on Physical Design , pp. 123-129
    • Tseng, K.-H.1
  • 50
    • 84865283268 scopus 로고    scopus 로고
    • Microfluidic single cell analysis: from promise to practice
    • Lecault V., et al. Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 2012, 16:381-390.
    • (2012) Curr Opin Chem Biol , vol.16 , pp. 381-390
    • Lecault, V.1
  • 51
    • 84856468378 scopus 로고    scopus 로고
    • Microfluidics for single cell analysis
    • Yin H., Marshall D. Microfluidics for single cell analysis. Curr Opin Biotechnol 2012, 23:110-119.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 110-119
    • Yin, H.1    Marshall, D.2
  • 52
    • 84872031599 scopus 로고    scopus 로고
    • Microfluidics for manipulating cells
    • Mu X., et al. Microfluidics for manipulating cells. Small 2013, 9:9-21.
    • (2013) Small , vol.9 , pp. 9-21
    • Mu, X.1
  • 53
    • 77954541844 scopus 로고    scopus 로고
    • Single-cell NF-kappa B dynamics reveal digital activation and analogue information processing
    • 267-U149
    • Tay S., et al. Single-cell NF-kappa B dynamics reveal digital activation and analogue information processing. Nature 2010, 466. 267-U149.
    • (2010) Nature , vol.466
    • Tay, S.1
  • 54
    • 36448935709 scopus 로고    scopus 로고
    • Versatile, fully automated, microfluidic cell culture system
    • Gomez-Sjoeberg R., et al. Versatile, fully automated, microfluidic cell culture system. Anal Chem 2007, 79:8557-8563.
    • (2007) Anal Chem , vol.79 , pp. 8557-8563
    • Gomez-Sjoeberg, R.1
  • 55
    • 62649094918 scopus 로고    scopus 로고
    • Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform
    • Taylor R.J., et al. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc Natl Acad Sci U S A 2009, 106:3758-3763.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 3758-3763
    • Taylor, R.J.1
  • 56
    • 78651304279 scopus 로고    scopus 로고
    • Whole-genome molecular haplotyping of single cells
    • Fan H.C., et al. Whole-genome molecular haplotyping of single cells. Nat Biotechnol 2011, 29:51+.
    • (2011) Nat Biotechnol , vol.29
    • Fan, H.C.1
  • 57
    • 79958122357 scopus 로고    scopus 로고
    • A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells
    • 738-U133
    • Ma C., et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 2011, 17. 738-U133.
    • (2011) Nat Med , vol.17
    • Ma, C.1
  • 58
    • 34547540925 scopus 로고    scopus 로고
    • Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth
    • Marcy Y., et al. Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 2007, 104:11889-11894.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 11889-11894
    • Marcy, Y.1
  • 59
    • 37349044981 scopus 로고    scopus 로고
    • A microfluidic processor for gene expression profiling of single human embryonic stem cells
    • Zhong J.F., et al. A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 2008, 8:68-74.
    • (2008) Lab Chip , vol.8 , pp. 68-74
    • Zhong, J.F.1
  • 60
    • 77953770945 scopus 로고    scopus 로고
    • An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically
    • Liu W., et al. An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically. Lab Chip 2010, 10:1717-1724.
    • (2010) Lab Chip , vol.10 , pp. 1717-1724
    • Liu, W.1
  • 61
    • 79551515086 scopus 로고    scopus 로고
    • Next generation microfluidic platforms for high-throughput protein biochemistry
    • Maerkl S.J. Next generation microfluidic platforms for high-throughput protein biochemistry. Curr Opin Biotechnol 2011, 22:59-65.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 59-65
    • Maerkl, S.J.1
  • 62
    • 68149099898 scopus 로고    scopus 로고
    • An integrated microfluidic device for large-scale in situ click chemistry screening
    • Wang Y., et al. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab Chip 2009, 9:2281-2285.
    • (2009) Lab Chip , vol.9 , pp. 2281-2285
    • Wang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.