메뉴 건너뛰기




Volumn 24, Issue , 2014, Pages 1-13

EpiMiner: A three-stage co-information based method for detecting and visualizing epistatic interactions

Author keywords

Co information; Epistatic interactions; Genomic signal processing; Single nucleotide polymorphisms

Indexed keywords

COMPUTATION THEORY; MATLAB; NUCLEOTIDES; SIGNAL PROCESSING;

EID: 84883626554     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2013.08.007     Document Type: Article
Times cited : (32)

References (53)
  • 1
    • 84999967156 scopus 로고    scopus 로고
    • Graphviz homepage
    • [1] Graphviz homepage http://graphviz.org/.
  • 4
    • 33646187199 scopus 로고    scopus 로고
    • Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility
    • [4] Andrew, A.S., Nelson, H.H., Kelsey, K.T., Moore, J.H., Meng, A.C., Casella, D.P., Tosteson, T.D., Schned, A.R., Karagas, M.R., Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27 (2006), 1030–1037.
    • (2006) Carcinogenesis , vol.27 , pp. 1030-1037
    • Andrew, A.S.1    Nelson, H.H.2    Kelsey, K.T.3    Moore, J.H.4    Meng, A.C.5    Casella, D.P.6    Tosteson, T.D.7    Schned, A.R.8    Karagas, M.R.9
  • 6
    • 71849113812 scopus 로고    scopus 로고
    • Information-theoretic gene–gene and gene–environment interaction analysis of quantitative traits
    • [6] Chanda, P., Sucheston, L., Liu, S., Zhang, A., Ramanathan, M., Information-theoretic gene–gene and gene–environment interaction analysis of quantitative traits. BMC Genomics, 10, 2009, 509.
    • (2009) BMC Genomics , vol.10 , pp. 509
    • Chanda, P.1    Sucheston, L.2    Liu, S.3    Zhang, A.4    Ramanathan, M.5
  • 7
    • 58149353029 scopus 로고    scopus 로고
    • AMBIENCE: A novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes
    • [7] Chanda, P., Sucheston, L., Zhang, A., Brazeau, D., Freudenheim, J.L., Ambrosone, C., Ramanathan, M., AMBIENCE: A novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes. Genetics 180 (2008), 1191–1210.
    • (2008) Genetics , vol.180 , pp. 1191-1210
    • Chanda, P.1    Sucheston, L.2    Zhang, A.3    Brazeau, D.4    Freudenheim, J.L.5    Ambrosone, C.6    Ramanathan, M.7
  • 8
    • 70349619639 scopus 로고    scopus 로고
    • The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors
    • [8] Chanda, P., Sucheston, L., Zhang, A., Ramanathan, M., The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors. Eur. J. Hum. Genet. 17 (2009), 1274–1286.
    • (2009) Eur. J. Hum. Genet. , vol.17 , pp. 1274-1286
    • Chanda, P.1    Sucheston, L.2    Zhang, A.3    Ramanathan, M.4
  • 12
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: What it means, what it doesnʼt mean, and statistical methods to detect it in humans
    • [12] Cordell, H.J., Epistasis: What it means, what it doesnʼt mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11 (2002), 2463–2468.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2463-2468
    • Cordell, H.J.1
  • 13
    • 33645667224 scopus 로고    scopus 로고
    • Genomic Signal Processing and Statistics
    • Hindawi Publishing Corporation
    • [13] Dougherty, E.R., Shmulevich, I., Chen, J., Wang, Z.J., Genomic Signal Processing and Statistics. 2005, Hindawi Publishing Corporation.
    • (2005)
    • Dougherty, E.R.1    Shmulevich, I.2    Chen, J.3    Wang, Z.J.4
  • 16
    • 69449088874 scopus 로고    scopus 로고
    • Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene–gene interactions
    • [16] Greene, C.S., Penrod, N.M., Kiralis, J., Moore, J.H., Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene–gene interactions. BioData Mining 2 (2009), 1–9.
    • (2009) BioData Mining , vol.2 , pp. 1-9
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3    Moore, J.H.4
  • 17
    • 84866003109 scopus 로고    scopus 로고
    • Identification of protein coding regions using antinotch filters
    • [17] Hota, M.K., Srivastava, V.K., Identification of protein coding regions using antinotch filters. Digital Signal Process. 22 (2012), 869–877.
    • (2012) Digital Signal Process. , vol.22 , pp. 869-877
    • Hota, M.K.1    Srivastava, V.K.2
  • 18
    • 80052590363 scopus 로고    scopus 로고
    • Characterizing genetic interactions in human disease association studies using statistical epistasis networks
    • [18] Hu, T., Sinnott-Armstrong, N.A., Kiralis, J.W., Andrew, A.S., Karagas, M.R., Moore, J.H., Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinform., 12, 2011, 364.
    • (2011) BMC Bioinform. , vol.12 , pp. 364
    • Hu, T.1    Sinnott-Armstrong, N.A.2    Kiralis, J.W.3    Andrew, A.S.4    Karagas, M.R.5    Moore, J.H.6
  • 20
    • 84856423331 scopus 로고    scopus 로고
    • Comparative analysis of genomic signal processing for microarray data clustering
    • [20] Istepanian, R.S., Sungoor, A., Nebel, J.C., Comparative analysis of genomic signal processing for microarray data clustering. IEEE Trans. Nanobiosci. 10 (2011), 225–238.
    • (2011) IEEE Trans. Nanobiosci. , vol.10 , pp. 225-238
    • Istepanian, R.S.1    Sungoor, A.2    Nebel, J.C.3
  • 23
    • 64149104116 scopus 로고    scopus 로고
    • Quantifying and visualizing attribute interactions: An approach based on entropy
    • [23] Jakulin, A., Bratko, I., Quantifying and visualizing attribute interactions: An approach based on entropy. arXiv:cs.AI/0308002, 2004.
    • (2004)
    • Jakulin, A.1    Bratko, I.2
  • 25
    • 84863313682 scopus 로고    scopus 로고
    • Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model
    • [25] Liang, X.J., Yuan, L., Hu, J., Yu, H.H., Li, T., Lin, S.F., Tang, S.B., Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model. Mol. Vis. 18 (2012), 1649–1657.
    • (2012) Mol. Vis. , vol.18 , pp. 1649-1657
    • Liang, X.J.1    Yuan, L.2    Hu, J.3    Yu, H.H.4    Li, T.5    Lin, S.F.6    Tang, S.B.7
  • 28
    • 79957532423 scopus 로고    scopus 로고
    • Gene prediction based on DNA spectral analysis: A literature review
    • [28] Marhon, S.A., Kremer, S.C., Gene prediction based on DNA spectral analysis: A literature review. J. Comput. Biol. 18 (2011), 639–676.
    • (2011) J. Comput. Biol. , vol.18 , pp. 639-676
    • Marhon, S.A.1    Kremer, S.C.2
  • 29
    • 0002801737 scopus 로고
    • Multivariate information transmission
    • [29] McGill, W.J., Multivariate information transmission. Psychometrika 19 (1954), 97–116.
    • (1954) Psychometrika , vol.19 , pp. 97-116
    • McGill, W.J.1
  • 30
    • 63449100294 scopus 로고    scopus 로고
    • Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis
    • [30] McKinney, B.A., Crowe, J.E., Guo, J., Tian, D., Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis. PLoS Genet., 5, 2009, e1000432.
    • (2009) PLoS Genet. , vol.5 , pp. e1000432
    • McKinney, B.A.1    Crowe, J.E.2    Guo, J.3    Tian, D.4
  • 31
    • 70349885499 scopus 로고    scopus 로고
    • An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions
    • [31] Miller, D.J., Zhang, Y., Yu, G., Liu, Y., Chen, L., Langefeld, C.D., Herrington, D., Wang, Y., An algorithm for learning maximum entropy probability models of disease risk that efficiently searches and sparingly encodes multilocus genomic interactions. Bioinformatics 25 (2009), 2478–2485.
    • (2009) Bioinformatics , vol.25 , pp. 2478-2485
    • Miller, D.J.1    Zhang, Y.2    Yu, G.3    Liu, Y.4    Chen, L.5    Langefeld, C.D.6    Herrington, D.7    Wang, Y.8
  • 32
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • [32] Moore, J.H., Gilbert, J.C., Tsai, C.T., Chiang, F.T., Holden, T., Barney, N., White, B.C., A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theoret. Biol. 241 (2006), 252–261.
    • (2006) J. Theoret. Biol. , vol.241 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.T.3    Chiang, F.T.4    Holden, T.5    Barney, N.6    White, B.C.7
  • 36
    • 84864146891 scopus 로고    scopus 로고
    • Incorporating heuristic information into ant colony optimization for epistasis detection
    • [36] Shang, J., Zhang, J., Lei, X., Zhang, Y., Chen, B., Incorporating heuristic information into ant colony optimization for epistasis detection. Genes Genom. 34 (2012), 321–327.
    • (2012) Genes Genom. , vol.34 , pp. 321-327
    • Shang, J.1    Zhang, J.2    Lei, X.3    Zhang, Y.4    Chen, B.5
  • 37
    • 84878761178 scopus 로고    scopus 로고
    • EpiSIM: Simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis
    • [37] Shang, J., Zhang, J., Lei, X., Zhao, W., Dong, Y., EpiSIM: Simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis. Genes Genom. 35 (2013), 305–316.
    • (2013) Genes Genom. , vol.35 , pp. 305-316
    • Shang, J.1    Zhang, J.2    Lei, X.3    Zhao, W.4    Dong, Y.5
  • 38
    • 83455201603 scopus 로고    scopus 로고
    • Performance analysis of novel methods for detecting epistasis
    • [38] Shang, J., Zhang, J., Sun, Y., Liu, D., Ye, D., Yin, Y., Performance analysis of novel methods for detecting epistasis. BMC Bioinform., 12, 2011, 475.
    • (2011) BMC Bioinform. , vol.12 , pp. 475
    • Shang, J.1    Zhang, J.2    Sun, Y.3    Liu, D.4    Ye, D.5    Yin, Y.6
  • 40
    • 77957306554 scopus 로고    scopus 로고
    • Systematic removal of outliers to reduce heterogeneity in case-control association studies
    • [40] Shen, Y., Liu, Z., Ott, J., Systematic removal of outliers to reduce heterogeneity in case-control association studies. Hum. Hered. 70 (2010), 227–231.
    • (2010) Hum. Hered. , vol.70 , pp. 227-231
    • Shen, Y.1    Liu, Z.2    Ott, J.3
  • 41
    • 85032774292 scopus 로고    scopus 로고
    • Single nucleotide polymorphism data analysis
    • [41] Su, S.C., Kuo, C.C.J., Chen, T., Single nucleotide polymorphism data analysis. IEEE Signal Process. Mag. 24 (2007), 75–82.
    • (2007) IEEE Signal Process. Mag. , vol.24 , pp. 75-82
    • Su, S.C.1    Kuo, C.C.J.2    Chen, T.3
  • 42
    • 77956486089 scopus 로고    scopus 로고
    • Comparison of information-theoretic to statistical methods for gene–gene interactions in the presence of genetic heterogeneity
    • [42] Sucheston, L., Chanda, P., Zhang, A., Tritchler, D., Ramanathan, M., Comparison of information-theoretic to statistical methods for gene–gene interactions in the presence of genetic heterogeneity. BMC Genomics, 11, 2010, 487.
    • (2010) BMC Genomics , vol.11 , pp. 487
    • Sucheston, L.1    Chanda, P.2    Zhang, A.3    Tritchler, D.4    Ramanathan, M.5
  • 43
    • 0019042755 scopus 로고
    • Multiple mutual informations and multiple interactions in frequency data
    • [43] Han, T. Sun, Multiple mutual informations and multiple interactions in frequency data. Inform. Control 46 (1980), 26–45.
    • (1980) Inform. Control , vol.46 , pp. 26-45
    • Han, T.S.1
  • 44
    • 66649108315 scopus 로고    scopus 로고
    • Epistatic module detection for case-control studies: A Bayesian model with a Gibbs sampling strategy
    • [44] Tang, W., Wu, X., Jiang, R., Li, Y., Epistatic module detection for case-control studies: A Bayesian model with a Gibbs sampling strategy. PLoS Genet., 5, 2009, e1000464.
    • (2009) PLoS Genet. , vol.5 , pp. e1000464
    • Tang, W.1    Wu, X.2    Jiang, R.3    Li, Y.4
  • 45
    • 11444250228 scopus 로고    scopus 로고
    • Genomics and proteomics: A signal processorʼs tour
    • [45] Vaidyanathan, P., Genomics and proteomics: A signal processorʼs tour. IEEE Circuits Syst. Mag. 4 (2004), 6–29.
    • (2004) IEEE Circuits Syst. Mag. , vol.4 , pp. 6-29
    • Vaidyanathan, P.1
  • 46
    • 1542742235 scopus 로고    scopus 로고
    • The role of signal-processing concepts in genomics and proteomics
    • [46] Vaidyanathan, P., Yoon, B.J., The role of signal-processing concepts in genomics and proteomics. J. Franklin Inst. 341 (2004), 111–135.
    • (2004) J. Franklin Inst. , vol.341 , pp. 111-135
    • Vaidyanathan, P.1    Yoon, B.J.2
  • 47
    • 77956395423 scopus 로고    scopus 로고
    • BOOST: A fast approach to detecting gene–gene interactions in genome-wide case-control studies
    • [47] Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N.L., Yu, W., BOOST: A fast approach to detecting gene–gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87 (2010), 325–340.
    • (2010) Am. J. Hum. Genet. , vol.87 , pp. 325-340
    • Wan, X.1    Yang, C.2    Yang, Q.3    Xue, H.4    Fan, X.5    Tang, N.L.6    Yu, W.7
  • 48
    • 75249087515 scopus 로고    scopus 로고
    • Predictive rule inference for epistatic interaction detection in genome-wide association studies
    • [48] Wan, X., Yang, C., Yang, Q., Xue, H., Tang, N.L., Yu, W., Predictive rule inference for epistatic interaction detection in genome-wide association studies. Bioinformatics 26 (2010), 30–37.
    • (2010) Bioinformatics , vol.26 , pp. 30-37
    • Wan, X.1    Yang, C.2    Yang, Q.3    Xue, H.4    Tang, N.L.5    Yu, W.6
  • 49
    • 82355167935 scopus 로고    scopus 로고
    • Detecting genes and gene–gene interactions for age-related macular degeneration with a forest-based approach
    • [49] Wang, M., Zhang, M., Chen, X., Zhang, H., Detecting genes and gene–gene interactions for age-related macular degeneration with a forest-based approach. Stat. Biopharm. Res. 1 (2009), 424–430.
    • (2009) Stat. Biopharm. Res. , vol.1 , pp. 424-430
    • Wang, M.1    Zhang, M.2    Chen, X.3    Zhang, H.4
  • 50
    • 80054892937 scopus 로고    scopus 로고
    • An empirical comparison of several recent epistatic interaction detection methods
    • [50] Wang, Y., Liu, G., Feng, M., Wong, L., An empirical comparison of several recent epistatic interaction detection methods. Bioinformatics 27 (2011), 2936–2943.
    • (2011) Bioinformatics , vol.27 , pp. 2936-2943
    • Wang, Y.1    Liu, G.2    Feng, M.3    Wong, L.4
  • 51
    • 77953271464 scopus 로고    scopus 로고
    • AntEpiSeeker: Detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm
    • [51] Wang, Y., Liu, X., Robbins, K., Rekaya, R., AntEpiSeeker: Detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm. BMC Res. Notes, 3, 2010, 117.
    • (2010) BMC Res. Notes , vol.3 , pp. 117
    • Wang, Y.1    Liu, X.2    Robbins, K.3    Rekaya, R.4
  • 52
    • 84855175318 scopus 로고    scopus 로고
    • Detecting genome-wide epistases based on the clustering of relatively frequent items
    • [52] Xie, M., Li, J., Jiang, T., Detecting genome-wide epistases based on the clustering of relatively frequent items. Bioinformatics 28 (2012), 5–12.
    • (2012) Bioinformatics , vol.28 , pp. 5-12
    • Xie, M.1    Li, J.2    Jiang, T.3
  • 53
    • 34548352849 scopus 로고    scopus 로고
    • Bayesian inference of epistatic interactions in case-control studies
    • [53] Zhang, Y., Liu, J.S., Bayesian inference of epistatic interactions in case-control studies. Nat. Genet. 39 (2007), 1167–1173.
    • (2007) Nat. Genet. , vol.39 , pp. 1167-1173
    • Zhang, Y.1    Liu, J.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.