메뉴 건너뛰기




Volumn 9, Issue 5, 2013, Pages 708-721

Enabling real-time city sensing with kernel stream oracles and MapReduce

Author keywords

Kernel methods; Machine learning; Sensor networks; Smart cities; Spatial statistics

Indexed keywords

SENSOR NETWORKS; SMART CITY;

EID: 84883463862     PISSN: 15741192     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pmcj.2012.11.003     Document Type: Article
Times cited : (19)

References (40)
  • 9
    • 0001500115 scopus 로고
    • Functions of positive and negative type, and their connection with the theory of integral equations
    • 10.1098/rsta.1909.0016 Containing Papers of a Math. or Phys. Character (1896-1934)
    • J. Mercer Functions of positive and negative type, and their connection with the theory of integral equations Philosophical Transactions of the Royal Society of London. Series A 209 1 1909 415 446 10.1098/rsta.1909.0016 Containing Papers of a Math. or Phys. Character (1896-1934)
    • (1909) Philosophical Transactions of the Royal Society of London. Series A , vol.209 , Issue.1 , pp. 415-446
    • Mercer, J.1
  • 16
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • 10.1145/959242.959248
    • T. Gärtner A survey of kernels for structured data SIGKDD Explor. Newsl. 5 1 2003 49 58 10.1145/959242.959248
    • (2003) SIGKDD Explor. Newsl. , vol.5 , Issue.1 , pp. 49-58
    • Gärtner, T.1
  • 17
  • 18
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • 10.1109/TSP.2004.830985
    • Y. Engel, S. Mannor, and R. Meir The kernel recursive least-squares algorithm IEEE Transactions on Signal Processing 52 8 2004 2275 2285 10.1109/TSP.2004.830985
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 19
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • 10.1162/089976602317250933
    • L. Csató, and M. Opper Sparse on-line Gaussian processes Neural Computation 14 2002 641 668 10.1162/089976602317250933
    • (2002) Neural Computation , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 20
    • 0001406710 scopus 로고
    • Some theorems in least squares
    • 10.2307/2332158
    • R.L. Plackett Some theorems in least squares Biometrika 37 1/2 1950 10.2307/2332158
    • (1950) Biometrika , vol.37 , Issue.1-2
    • Plackett, R.L.1
  • 22
    • 0028192258 scopus 로고
    • Spatial interpolation: An overview
    • 10.1016/0016-7061(94)90025-6
    • D.E. Myers Spatial interpolation: an overview Geoderma 62 1-3 1994 17 28 10.1016/0016-7061(94)90025-6
    • (1994) Geoderma , vol.62 , Issue.13 , pp. 17-28
    • Myers, D.E.1
  • 23
    • 37849041594 scopus 로고    scopus 로고
    • Fixed rank kriging for very large spatial data sets
    • 10.1111/j.1467-9868.2007.00633.x
    • N. Cressie, and G. Johannesson Fixed rank kriging for very large spatial data sets Journal of the Royal Statistical Society B 70 1 2008 209 226 10.1111/j.1467-9868.2007.00633.x
    • (2008) Journal of the Royal Statistical Society B , vol.70 , Issue.1 , pp. 209-226
    • Cressie, N.1    Johannesson, G.2
  • 24
    • 0018659851 scopus 로고
    • Smooth pycnophylactic interpolation for geographical regions
    • W. Tobler Smooth pycnophylactic interpolation for geographical regions Journal of the American Statistical Association 74 367 1979 519 530
    • (1979) Journal of the American Statistical Association , vol.74 , Issue.367 , pp. 519-530
    • Tobler, W.1
  • 26
    • 3242806523 scopus 로고    scopus 로고
    • A geostatistical framework for area-to-point spatial interpolation
    • P.C. Kyriakidis A geostatistical framework for area-to-point spatial interpolation Geographical Analysis 36 3 2004 259 289
    • (2004) Geographical Analysis , vol.36 , Issue.3 , pp. 259-289
    • Kyriakidis, P.C.1
  • 30
    • 0346250708 scopus 로고    scopus 로고
    • Distributed multivariate regression using wavelet-based collective data mining
    • 10.1006/jpdc.2000.1694 (Special issue on high-performance data mining)
    • D.E. Hershberger, and H. Kargupta Distributed multivariate regression using wavelet-based collective data mining Journal of Parallel and Distributed Computing 61 3 1999 10.1006/jpdc.2000.1694 (Special issue on high-performance data mining)
    • (1999) Journal of Parallel and Distributed Computing , vol.61 , Issue.3
    • Hershberger, D.E.1    Kargupta, H.2
  • 31
    • 52649172224 scopus 로고    scopus 로고
    • An efficient local algorithm for distributed multivariate regression in peer-to-peer networks
    • April 24-26, Atlanta, Georgia
    • K. Bhaduri, H. Kargupta, An efficient local algorithm for distributed multivariate regression in peer-to-peer networks, in: SIAM Conference on Data Mining, April 24-26, Atlanta, Georgia, 2008.
    • (2008) SIAM Conference on Data Mining
    • Bhaduri, K.1    Kargupta, H.2
  • 33
    • 33751022590 scopus 로고    scopus 로고
    • Distributed kernel regression: An algorithm for training collaboratively
    • March 13-17, Punta del Este, Uruguay
    • J. Predd, S. Kulkarni, H. Poor, Distributed kernel regression: an algorithm for training collaboratively, in: IEEE Information Theory Workshop, March 13-17, Punta del Este, Uruguay, 2006, pp. 332-336.
    • (2006) IEEE Information Theory Workshop , pp. 332-336
    • Predd, J.1    Kulkarni, S.2    Poor, H.3
  • 36
  • 37
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • C. Nédellec, C. Rouveirol, 10th European Conference on Machine Learning Springer Verlag Heidelberg, DE, Chemnitz, DE URL
    • T. Joachims Text categorization with support vector machines: learning with many relevant features C. Nédellec, C. Rouveirol, Proceedings of ECML-98 10th European Conference on Machine Learning vol. 1398 1998 Springer Verlag Heidelberg, DE, Chemnitz, DE 137 142 URL http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.21.8039
    • (1998) Proceedings of ECML-98 , vol.1398 , pp. 137-142
    • Joachims, T.1
  • 40
    • 79957898358 scopus 로고    scopus 로고
    • Training the eye: Formation of the geocoding subject
    • 10.1080/14649365.2010.521856
    • M.W. Wilson Training the eye: formation of the geocoding subject Social & Cultural Geography 12 4 2011 357 376 10.1080/14649365.2010.521856
    • (2011) Social & Cultural Geography , vol.12 , Issue.4 , pp. 357-376
    • Wilson, M.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.