메뉴 건너뛰기




Volumn 25, Issue 1, 2011, Pages 51-66

Learning wind fields with multiple kernels

Author keywords

Feature selection; Multiple kernel learning; Support vector regression; Topographic features indices extraction; Wind resource estimation

Indexed keywords

FEATURE SELECTION; MULTIPLE KERNEL LEARNING; SUPPORT VECTOR REGRESSION; TOPOGRAPHIC FEATURES/INDICES EXTRACTION; WIND RESOURCE ESTIMATION;

EID: 78651471252     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-010-0405-0     Document Type: Article
Times cited : (35)

References (55)
  • 3
    • 0035251745 scopus 로고    scopus 로고
    • A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modeling
    • Ayotte KW, Davy RJ, Coppin PA (2001) A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modeling. Boundary-Layer Meteorol 98: 275-295.
    • (2001) Boundary-Layer Meteorology , vol.98 , pp. 275-295
    • Ayotte, K.W.1    Davy, R.J.2    Coppin, P.A.3
  • 9
    • 39349083955 scopus 로고    scopus 로고
    • Wind speed spatial estimation for energy planning in Sicily: A neural kriging application
    • Cellura M, Cirrincione G, Marvuglia A, Miraoui A (2008) Wind speed spatial estimation for energy planning in Sicily: a neural kriging application. Renew Energy 33: 1251-1266.
    • (2008) Renewable Energy , vol.33 , pp. 1251-1266
    • Cellura, M.1    Cirrincione, G.2    Marvuglia, A.3    Miraoui, A.4
  • 12
    • 2942593743 scopus 로고    scopus 로고
    • A prediction system for local wind variations in mountainous terrain
    • Eidsvik KJ, Holstad A, Lie I, Utnes T (2004) A prediction system for local wind variations in mountainous terrain. Boundary-Layer Meteorology 112: 557-586.
    • (2004) Boundary-Layer Meteorology , vol.112 , pp. 557-586
    • Eidsvik, K.J.1    Holstad, A.2    Lie, I.3    Utnes, T.4
  • 22
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46: 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 23
  • 26
  • 27
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Hughes GF (1968) On the mean accuracy of statistical pattern recognition. IEEE Trans Inf Theory 14(1): 55-63.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 32
    • 33750975917 scopus 로고    scopus 로고
    • Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure
    • Lewis DP, Jebara T, Noble WS (2006) Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22: 2753-2760.
    • (2006) Bioinformatics , vol.22 , pp. 2753-2760
    • Lewis, D.P.1    Jebara, T.2    Noble, W.S.3
  • 33
    • 84974518519 scopus 로고    scopus 로고
    • Modelling channeling and deflection of wind by topography
    • Zhou Q, Lees B (eds),Springer, NY
    • Lindsay JB, Rothwell J (2008) Modelling channeling and deflection of wind by topography. In: Zhou Q, Lees B (eds) Advances in digital terrain analysis. Springer, NY, pp 383-406.
    • (2008) Advances in digital terrain analysis , pp. 383-406
    • Lindsay, J.B.1    Rothwell, J.2
  • 34
    • 33646539843 scopus 로고    scopus 로고
    • Meteorological distribution system for high-resolution terrestrial modeling (microMet)
    • Liston GE, Elder KA (2006) Meteorological distribution system for high-resolution terrestrial modeling (microMet). J Hydrometeorol 7: 217-234.
    • (2006) Journal of Hydrometeorology , vol.7 , pp. 217-234
    • Liston, G.E.1    Elder, K.A.2
  • 42
    • 68549119086 scopus 로고    scopus 로고
    • Data-driven topo-climatic mapping with machine learning methods
    • Pozdnoukhov A, Foresti L and Kanevski M (2009) Data-driven topo-climatic mapping with machine learning methods. Nat Haz 3(50): 497-518.
    • (2009) Natural Hazards , vol.3 , Issue.50 , pp. 497-518
    • Pozdnoukhov, A.1    Foresti, L.2    Kanevski, M.3
  • 44
    • 33947325162 scopus 로고    scopus 로고
    • Learning interpretable SVMs for biological sequence classification
    • Rätsch G, Sonnenburg S, Schäfer C (2006) Learning interpretable SVMs for biological sequence classification. BMC Bioinformatics 7(Suppl 1): S9.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Rätsch, G.1    Sonnenburg, S.2    Schäfer, C.3
  • 45
    • 78651518526 scopus 로고    scopus 로고
    • The alpine space wind map: modeling approach
    • Schaffner B, Remund J (eds),Alpine windharvest partnership network
    • Schaffner B, Remund J (eds) (2005) The alpine space wind map: modeling approach. Alpine Windharvest Report Series 7-2. Alpine windharvest partnership network.
    • (2005) Alpine Windharvest Report Series 7-2
  • 46
    • 84898990165 scopus 로고    scopus 로고
    • The kernel trick for distances
    • Leen TK, Dietterich TG, and Tresp V (eds),MIT Press, Cambridge
    • Schölkopf B (2001) The kernel trick for distances. In: Leen TK, Dietterich TG, and Tresp V (eds) NIPS. MIT Press, Cambridge, pp 301-307.
    • (2001) NIPS , pp. 301-307
    • Schölkopf, B.1
  • 50
    • 84885526611 scopus 로고    scopus 로고
    • Environmental monitoring network characterization and clustering
    • ISTE Wiley, NY,Kanevski (ed)
    • Tuia D, Kanevski M (2008) Environmental monitoring network characterization and clustering. In: Kanevski (ed) Advanced mapping of environmental data. ISTE Wiley, NY, pp 19-47.
    • (2008) Advanced mapping of environmental data , pp. 19-47
    • Tuia, D.1    Kanevski, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.