메뉴 건너뛰기




Volumn 142, Issue 3, 2013, Pages 181-190

A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; VOLTAGE GATED SODIUM CHANNEL;

EID: 84883254270     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201311012     Document Type: Article
Times cited : (40)

References (52)
  • 1
    • 84866149211 scopus 로고    scopus 로고
    • Voltage sensor inactivation in potassium channels
    • Bähring, R., J. Barghaan, R. Westermeier, and J. Wollberg. 2012.Voltage sensor inactivation in potassium channels. Front Pharmacol. 3:100. http://dx.doi.org/10.3389/fphar.2012.00
    • (2012) Front Pharmacol. , vol.3 , pp. 100
    • Bähring, R.1    Barghaan, J.2    Westermeier, R.3    Wollberg, J.4
  • 3
    • 34247880407 scopus 로고    scopus 로고
    • Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel
    • Blanchet, J., S. Pilote, and M. Chahine. 2007. Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel. Biophys. J. 92:3513-3523. http://dx.doi.org/10.1529/ biophysj.106.090464
    • (2007) Biophys. J. , vol.92 , pp. 3513-3523
    • Blanchet, J.1    Pilote, S.2    Chahine, M.3
  • 4
    • 0023162321 scopus 로고
    • Intramembrane charge movement in frog skeletal muscle fibres
    • sBrum, G., and E. Rios. 1987. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. J. Physiol. 387:489-517.
    • (1987) Properties of charge 2. J. Physiol. , vol.387 , pp. 489-517
    • Sbrum, G.1    Rios, E.2
  • 5
    • 84857124903 scopus 로고    scopus 로고
    • Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor
    • Capes, D.L., M. Arcisio-Miranda, B.W. Jarecki, R.J. French, and B. Chanda. 2012. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor. Proc. Natl. Acad. Sci. USA. 109:2648-2653. http://dx.doi.org/10.1073/pnas.1115575109
    • (2012) Proc. Natl. Acad. Sci. USA. , vol.109 , pp. 2648-2653
    • Capes, D.L.1    Arcisio-Miranda, M.2    Jarecki, B.W.3    French, R.J.4    Chanda, B.5
  • 6
    • 0033694833 scopus 로고    scopus 로고
    • From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels
    • Catterall, W.A. 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26:13-25. http://dx.doi.org/10.1016/S0896-6273(00)81133-2
    • (2000) Neuron. , vol.26 , pp. 13-25
    • Catterall, W.A.1
  • 7
    • 0032963770 scopus 로고    scopus 로고
    • Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation
    • Cha, A., P.C. Ruben, A.L. George Jr., E. Fujimoto, and F. Bezanilla. 1999. Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron. 22:73-87. http://dx.doi.org/10.1016/S0896-6273(00)80680-7
    • (1999) Neuron. , vol.22 , pp. 73-87
    • Cha, A.1    Ruben, P.C.2    George, A.L.3    Fujimoto, E.4    Bezanilla, F.5
  • 8
    • 0030453610 scopus 로고    scopus 로고
    • A unique role for the S4 segment of domain 4 in the inactivation of sodium channels
    • Chen, L.Q., V. Santarelli, R. Horn, and R.G. Kallen. 1996. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J. Gen. Physiol. 108:549-556. http://dx.doi .org/10.1085/jgp.108.6.549
    • (1996) J. Gen. Physiol. , vol.108 , pp. 549-556
    • Chen, L.Q.1    Santarelli, V.2    Horn, R.3    Kallen, R.G.4
  • 9
    • 31444454845 scopus 로고    scopus 로고
    • Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C
    • Chen, Y., F.H. Yu, D.J. Surmeier, T. Scheuer, and W.A. Catterall. 2006. Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron. 49:409-420. http://dx.doi.org/10.1016/j.neuron.2006.01.009
    • (2006) Neuron. , vol.49 , pp. 409-420
    • Chen, Y.1    Yu, F.H.2    Surmeier, D.J.3    Scheuer, T.4    Catterall, W.A.5
  • 11
    • 77954485089 scopus 로고    scopus 로고
    • Structural mechanism of C-type inactivation in K+ channels
    • Cuello, L.G., V. Jogini, D.M. Cortes, and E. Perozo. 2010b. Structural mechanism of C-type inactivation in K+ channels. Nature. 466:203-208. http://dx.doi.org/10.1038/nature09153
    • (2010) Nature. , vol.466 , pp. 203-208
    • Cuello, L.G.1    Jogini, V.2    Cortes, D.M.3    Perozo, E.4
  • 13
    • 54449100445 scopus 로고    scopus 로고
    • Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation
    • DeCaen, P.G., V. Yarov-Yarovoy, Y. Zhao, T. Scheuer, and W.A. Catterall. 2008. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA. 105:15142-15147. http://dx.doi.org/10.1073/pnas.0806486105
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , pp. 15142-15147
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Zhao, Y.3    Scheuer, T.4    Catterall, W.A.5
  • 14
    • 76049115811 scopus 로고    scopus 로고
    • Sequential formation of ion pairs during activation of a sodium channel voltage sensor
    • DeCaen, P.G., V. Yarov-Yarovoy, E.M. Sharp, T. Scheuer, and W.A. Catterall. 2009. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc. Natl. Acad. Sci. USA. 106:22498-22503. http://dx.doi.org/10.1073/pnas.0912307106
    • (2009) Proc. Natl. Acad. Sci. USA. , vol.106 , pp. 22498-22503
    • DeCaen, P.G.1    Yarov-Yarovoy, V.2    Sharp, E.M.3    Scheuer, T.4    Catterall, W.A.5
  • 15
    • 79956125732 scopus 로고    scopus 로고
    • Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain
    • Haddad, G.A., and R. Blunck. 2011. Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain. J. Gen. Physiol. 137:455-472. http://dx.doi.org/10.1085/jgp.201010573
    • (2011) J. Gen. Physiol. , vol.137 , pp. 455-472
    • Haddad, G.A.1    Blunck, R.2
  • 16
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin, A.L., and A.F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-544.
    • (1952) J. Physiol. , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 19
    • 0343152628 scopus 로고    scopus 로고
    • Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization
    • Kühn, F.J., and N.G. Greeff. 1999. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J. Gen. Physiol. 114:167-183. http://dx.doi.org/10.1085/jgp.114.2.167
    • (1999) J. Gen. Physiol. , vol.114 , pp. 167-183
    • Kühn, F.J.1    Greeff, N.G.2
  • 20
    • 0042697277 scopus 로고    scopus 로고
    • Atomic proximity between S4 segment and pore domain in Shaker potassium channels
    • Lainé, M., M.C. Lin, J.P. Bannister, W.R. Silverman, A.F. Mock, B. Roux, and D.M. Papazian. 2003. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron. 39:467-481. http://dx.doi.org/10.1016/S0896-6273(03)00468-9
    • (2003) Neuron. , vol.39 , pp. 467-481
    • Lainé, M.1    Lin, M.C.2    Bannister, J.P.3    Silverman, W.R.4    Mock, A.F.5    Roux, B.6    Papazian, D.M.7
  • 21
    • 23244456428 scopus 로고    scopus 로고
    • Crystal structure of a mammalian voltage-dependent Shaker family K+ channel
    • Long, S.B., E.B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 309:897-903. http://dx.doi.org/10.1126/science.1116269
    • (2005) Science. , vol.309 , pp. 897-903
    • Long, S.B.1    Campbell, E.B.2    Mackinnon, R.3
  • 22
    • 0031718344 scopus 로고    scopus 로고
    • Protein rearrangements underlying slow inactivation of the Shaker K+ channel
    • Loots, E., and E.Y. Isacoff. 1998. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J. Gen. Physiol. 112:377-389. http://dx.doi.org/10.1085/jgp.112.4.377
    • (1998) J. Gen. Physiol. , vol.112 , pp. 377-389
    • Loots, E.1    Isacoff, E.Y.2
  • 23
    • 0033756431 scopus 로고    scopus 로고
    • Molecular coupling of S4 to a K+ channel's slow inactivation gate
    • Loots, E., and E.Y. Isacoff. 2000. Molecular coupling of S4 to a K+ channel's slow inactivation gate. J. Gen. Physiol. 116:623-636. http://dx.doi.org/10.1085/jgp.116.5.623
    • (2000) J. Gen. Physiol. , vol.116 , pp. 623-636
    • Loots, E.1    Isacoff, E.Y.2
  • 24
    • 15244353283 scopus 로고    scopus 로고
    • Hysteresis in the voltage dependence of HCN channels: Conversion between two modes affects pacemaker properties
    • Männikkö, R., S. Pandey, H.P. Larsson, and F. Elinder. 2005. Hysteresis in the voltage dependence of HCN channels: Conversion between two modes affects pacemaker properties. J. Gen. Physiol. 125:305-326. http://dx.doi.org/10.1085/jgp.200409130
    • (2005) J. Gen. Physiol. , vol.125 , pp. 305-326
    • Männikkö, R.1    Pandey, S.2    Larsson, H.P.3    Elinder, F.4
  • 25
    • 0034045558 scopus 로고    scopus 로고
    • Role of domain 4 in sodium channel slow inactivation
    • Mitrovic, N., A.L. George Jr., and R. Horn. 2000. Role of domain 4 in sodium channel slow inactivation. J. Gen. Physiol. 115:707-718. http://dx.doi.org/10.1085/jgp.115.6.707
    • (2000) J. Gen. Physiol. , vol.115 , pp. 707-718
    • Mitrovic, N.1    George, A.L.2    Horn, R.3
  • 26
    • 0030463971 scopus 로고    scopus 로고
    • Coupling between charge movement and pore opening in vertebrate neuronal alpha 1E calcium channels
    • Olcese, R., A. Neely, N. Qin, X. Wei, L. Birnbaumer, and E. Stefani. 1996. Coupling between charge movement and pore opening in vertebrate neuronal alpha 1E calcium channels. J. Physiol. 497:675-686.
    • (1996) J. Physiol. , vol.497 , pp. 675-686
    • Olcese, R.1    Neely, A.2    Qin, N.3    Wei, X.4    Birnbaumer, L.5    Stefani, E.6
  • 27
    • 0030656233 scopus 로고    scopus 로고
    • Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels
    • Olcese, R., R. Latorre, L. Toro, F. Bezanilla, and E. Stefani. 1997. Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J. Gen. Physiol. 110:579-589. http://dx.doi.org/10.1085/jgp.110.5.579
    • (1997) J. Gen. Physiol. , vol.110 , pp. 579-589
    • Olcese, R.1    Latorre, R.2    Toro, L.3    Bezanilla, F.4    Stefani, E.5
  • 28
    • 0028998041 scopus 로고
    • Electrostatic interactions of S4 voltage sensor in Shaker K+ channel
    • Papazian, D.M., X.M. Shao, S.A. Seoh, A.F. Mock, Y. Huang, and D.H. Wainstock. 1995. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron. 14:1293-1301. http://dx.doi.org/10.1016/0896-6273(95)90276-7
    • (1995) Neuron. , vol.14 , pp. 1293-1301
    • Papazian, D.M.1    Shao, X.M.2    Seoh, S.A.3    Mock, A.F.4    Huang, Y.5    Wainstock, D.H.6
  • 29
    • 23244467740 scopus 로고    scopus 로고
    • The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel
    • Pavlov, E., C. Bladen, R. Winkfein, C. Diao, P. Dhaliwal, and R.J. French. 2005. The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys. J. 89:232-242. http://dx.doi.org/10.1529/biophysj.104.056994
    • (2005) Biophys. J. , vol.89 , pp. 232-242
    • Pavlov, E.1    Bladen, C.2    Winkfein, R.3    Diao, C.4    Dhaliwal, P.5    French, R.J.6
  • 30
    • 79960621367 scopus 로고    scopus 로고
    • The crystal structure of a voltage-gated sodium channel
    • Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. 2011. The crystal structure of a voltage-gated sodium channel. Nature. 475:353-358. http://dx.doi.org/10.1038/nature10238
    • (2011) Nature. , vol.475 , pp. 353-358
    • Payandeh, J.1    Scheuer, T.2    Zheng, N.3    Catterall, W.A.4
  • 31
    • 84861945912 scopus 로고    scopus 로고
    • Crystal structure of a voltage-gated sodium channel in two potentially inactivated states
    • Payandeh, J., T.M. Gamal El-Din, T. Scheuer, N. Zheng, and W.A. Catterall. 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. 486:135-139.
    • (2012) Nature. , vol.486 , pp. 135-139
    • Payandeh, J.1    Gamal El-Din, T.M.2    Scheuer, T.3    Zheng, N.4    Catterall, W.A.5
  • 32
    • 0041836223 scopus 로고    scopus 로고
    • Gating currents associated with intramembrane charge displacement in HERG potassium channels
    • Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. Gating currents associated with intramembrane charge displacement in HERG potassium channels. Proc. Natl. Acad. Sci. USA. 100:10534-10539. http://dx.doi.org/10.1073/pnas.1832721100
    • (2003) Proc. Natl. Acad. Sci. USA. , vol.100 , pp. 10534-10539
    • Piper, D.R.1    Varghese, A.2    Sanguinetti, M.C.3    Tristani-Firouzi, M.4
  • 33
    • 0029025934 scopus 로고
    • Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating
    • Planells-Cases, R., A.V. Ferrer-Montiel, C.D. Patten, and M. Montal. 1995. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating. Proc. Natl. Acad. Sci. USA. 92:9422-9426. http://dx.doi.org/10.1073/pnas.92.20.9422
    • (1995) Proc. Natl. Acad. Sci. USA. , vol.92 , pp. 9422-9426
    • Planells-Cases, R.1    Ferrer-Montiel, A.V.2    Patten, C.D.3    Montal, M.4
  • 34
    • 84860390173 scopus 로고    scopus 로고
    • Contributions of counter-charge in a potassium channel voltagesensor domain
    • Pless, S.A., J.D. Galpin, A.P. Niciforovic, and C.A. Ahern. 2011. Contributions of counter-charge in a potassium channel voltagesensor domain. Nat. Chem. Biol. 7:617-623. http://dx.doi.org/ 10.1038/nchembio.622
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 617-623
    • Pless, S.A.1    Galpin, J.D.2    Niciforovic, A.P.3    Ahern, C.A.4
  • 35
    • 0035861457 scopus 로고    scopus 로고
    • A prokaryotic voltage-gated sodium channel
    • Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science. 294:2372-2375. http://dx.doi.org/10.1126/science.1065635
    • (2001) Science. , vol.294 , pp. 2372-2375
    • Ren, D.1    Navarro, B.2    Xu, H.3    Yue, L.4    Shi, Q.5    Clapham, D.E.6
  • 36
    • 0025130227 scopus 로고
    • Holding potential affects the apparent voltage-sensitivity of sodium channel activation in crayfish giant axons
    • Ruben, P.C., J.G. Starkus, and M.D. Rayner. 1990. Holding potential affects the apparent voltage-sensitivity of sodium channel activation in crayfish giant axons. Biophys. J. 58:1169-1181. http://dx.doi.org/10.1016/S0006-3495(90)82458-9
    • (1990) Biophys. J. , vol.58 , pp. 1169-1181
    • Ruben, P.C.1    Starkus, J.G.2    Rayner, M.D.3
  • 37
    • 0018196425 scopus 로고
    • Slow inactivation of the sodium conductance in squid giant axons
    • Rudy, B. 1978. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283:1-21.
    • (1978) Pronase resistance. J. Physiol. , vol.283 , pp. 1-21
    • Rudy, B.1
  • 38
    • 0023162177 scopus 로고
    • Comparison between slow sodium channel inactivation in rat slow-and fasttwitch muscle
    • Ruff, R.L., L. Simoncini, and W. Stühmer. 1987. Comparison between slow sodium channel inactivation in rat slow-and fasttwitch muscle. J. Physiol. 383:339-348.
    • (1987) J. Physiol. , vol.383 , pp. 339-348
    • Ruff, R.L.1    Simoncini, L.2    Stühmer, W.3
  • 39
    • 33750975638 scopus 로고    scopus 로고
    • Functional interactions at the interface between voltage-sensing and pore domains in the Shaker Kv channel
    • Soler-Llavina, G.J., T.H. Chang, and K.J. Swartz. 2006. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker Kv channel. Neuron. 52:623-634. http:// dx.doi.org/10.1016/j.neuron.2006.10.005
    • (2006) Neuron. , vol.52 , pp. 623-634
    • Soler-Llavina, G.J.1    Chang, T.H.2    Swartz, K.J.3
  • 40
    • 0030893809 scopus 로고    scopus 로고
    • Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits
    • Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D.M. Papazian. 1997. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys. J. 72:1489-1500. http://dx.doi.org/10.1016/S0006-3495(97)78797-6
    • (1997) Biophys. J. , vol.72 , pp. 1489-1500
    • Tiwari-Woodruff, S.K.1    Schulteis, C.T.2    Mock, A.F.3    Papazian, D.M.4
  • 41
    • 0037166248 scopus 로고    scopus 로고
    • Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels
    • Tristani-Firouzi, M., J. Chen, and M.C. Sanguinetti. 2002. Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels. J. Biol. Chem. 277:18994-19000. http://dx.doi.org/10.1074/jbc.M200410200
    • (2002) J. Biol. Chem. , vol.277 , pp. 18994-19000
    • Tristani-Firouzi, M.1    Chen, J.2    Sanguinetti, M.C.3
  • 42
    • 25444498065 scopus 로고    scopus 로고
    • Sodium channel inactivation: molecular determinants and modulation
    • Ulbricht, W. 2005. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85:1271-1301. http://dx.doi.org/10.1152/physrev.00024.2004
    • (2005) Physiol. Rev. , vol.85 , pp. 1271-1301
    • Ulbricht, W.1
  • 43
    • 0023784649 scopus 로고
    • Identification of an intracellular peptide segment involved in sodium channel inactivation
    • Vassilev, P.M., T. Scheuer, and W.A. Catterall. 1988. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science. 241:1658-1661. http://dx.doi.org/10.1126/ science.2458625
    • (1988) Science. , vol.241 , pp. 1658-1661
    • Vassilev, P.M.1    Scheuer, T.2    Catterall, W.A.3
  • 44
    • 0035754168 scopus 로고    scopus 로고
    • Slow inactivation in voltagegated sodium channels: molecular substrates and contributions to channelopathies
    • Vilin, Y.Y., and P.C. Ruben. 2001. Slow inactivation in voltagegated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35:171-190.http:// dx.doi.org/10.1385/CBB:35:2:171
    • (2001) Cell Biochem. Biophys. , vol.35 , pp. 171-190
    • Vilin, Y.Y.1    Ruben, P.C.2
  • 45
    • 0035033883 scopus 로고    scopus 로고
    • A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation
    • Vilin, Y.Y., E. Fujimoto, and P.C. Ruben. 2001. A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys. J. 80:2221-2230. http://dx.doi .org/10.1016/S0006-3495(01)76195-4
    • (2001) Biophys. J. , vol.80 , pp. 2221-2230
    • Vilin, Y.Y.1    Fujimoto, E.2    Ruben, P.C.3
  • 48
    • 77953037714 scopus 로고    scopus 로고
    • State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7
    • Wu, D., K. Delaloye, M.A. Zaydman, A. Nekouzadeh, Y. Rudy, and J. Cui. 2010. State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7.1 activation. J. Gen. Physiol. 135:595-606. http://dx.doi.org/10.1085/jgp.201010408
    • (2010) 1 activation. J. Gen. Physiol. , vol.135 , pp. 595-606
    • Wu, D.1    Delaloye, K.2    Zaydman, M.A.3    Nekouzadeh, A.4    Rudy, Y.5    Cui, J.6
  • 49
    • 0030906796 scopus 로고    scopus 로고
    • How does the W434F mutation block current in Shaker potassium channels? J
    • Yang, Y., Y. Yan, and F.J. Sigworth. 1997. How does the W434F mutation block current in Shaker potassium channels? J. Gen. Physiol. 109:779-789. http://dx.doi.org/10.1085/jgp.109.6.779
    • (1997) Gen. Physiol. , vol.109 , pp. 779-789
    • Yang, Y.1    Yan, Y.2    Sigworth, F.J.3
  • 50
    • 84861952634 scopus 로고    scopus 로고
    • Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel
    • Zhang, X., W. Ren, P. DeCaen, C. Yan, X. Tao, L. Tang, J. Wang, K. Hasegawa, T. Kumasaka, J. He, et al. 2012. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 486:130-134. http://dx.doi.org/10.1038/nature11054
    • (2012) Nature. , vol.486 , pp. 130-134
    • Zhang, X.1    Ren, W.2    DeCaen, P.3    Yan, C.4    Tao, X.5    Tang, L.6    Wang, J.7    Hasegawa, K.8    Kumasaka, T.9    He, J.10
  • 51
    • 11144221751 scopus 로고    scopus 로고
    • Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment
    • Zhao, Y., T. Scheuer, and W.A. Catterall. 2004a. Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc. Natl. Acad. Sci. USA. 101:17873-17878. http://dx.doi.org/10.1073/pnas.0408270101
    • (2004) Proc. Natl. Acad. Sci. USA. , vol.101 , pp. 17873-17878
    • Zhao, Y.1    Scheuer, T.2    Catterall, W.A.3
  • 52
    • 1842422868 scopus 로고    scopus 로고
    • A gating hinge in Na+ channels: A molecular switch for electrical signaling
    • Zhao, Y., V. Yarov-Yarovoy, T. Scheuer, and W.A. Catterall. 2004b. A gating hinge in Na+ channels: A molecular switch for electrical signaling. Neuron. 41:859-865. http://dx.doi.org/10.1016/ S0896-6273(04)00116-3
    • (2004) Neuron. , vol.41 , pp. 859-865
    • Zhao, Y.1    Yarov-Yarovoy, V.2    Scheuer, T.3    Catterall, W.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.