메뉴 건너뛰기




Volumn 27, Issue 9, 2013, Pages 1518-1535

Erratum to Pid1 Induces Insulin Resistance in Both Human and Mouse Skeletal Muscle during Obesity (Mol Endocrinol, 2013, 27, (1518-1535) 10.1210/me.2013-1048);Pid1 induces insulin resistance in both human and mouse skeletal muscle during obesity

Author keywords

[No Author keywords available]

Indexed keywords

ENHANCED GREEN FLUORESCENT PROTEIN; GLUCOSE; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INSULIN; MYOSTATIN; PHOSPHOTYROSINE INTERACTING DOMAIN 1 PROTEIN; PROTEIN; SMALL INTERFERING RNA; TUMOR NECROSIS FACTOR ALPHA; UNCLASSIFIED DRUG;

EID: 84883227182     PISSN: 08888809     EISSN: 19449917     Source Type: Journal    
DOI: 10.1210/me.2013-1048     Document Type: Erratum
Times cited : (22)

References (47)
  • 1
    • 0017042247 scopus 로고
    • The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice
    • Dubuc PU. The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism. 1976;25:1567-1574.
    • (1976) Metabolism. , vol.25 , pp. 1567-1574
    • Dubuc, P.U.1
  • 2
    • 77953254909 scopus 로고    scopus 로고
    • Obesity and diabetes
    • Lois K, Kumar S. Obesity and diabetes. Endocrinol Nutr. 56(Suppl. 4):38-42.
    • Endocrinol Nutr. , vol.56 , Issue.SUPPL. 4 , pp. 38-42
    • Lois, K.1    Kumar, S.2
  • 3
    • 79955880176 scopus 로고    scopus 로고
    • Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle
    • Masharani UB, Maddux BA, Li X, et al. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle. PLoS One. 2011;6:e19878.
    • (2011) PLoS One. , vol.6
    • Masharani, U.B.1    Maddux, B.A.2    Li, X.3
  • 4
    • 33747366434 scopus 로고    scopus 로고
    • Identification and characterization of NYGGF4, a novel gene containing a phosphotyrosine-binding (PTB) domain that stimulates 3T3-L1 preadipocytes proliferation
    • Wang B, Zhang M, Ni YH, et al. Identification and characterization of NYGGF4, a novel gene containing a phosphotyrosine-binding (PTB) domain that stimulates 3T3-L1 preadipocytes proliferation. Gene. 2006;379:132-140.
    • (2006) Gene. , vol.379 , pp. 132-140
    • Wang, B.1    Zhang, M.2    Ni, Y.H.3
  • 5
    • 64849098867 scopus 로고    scopus 로고
    • Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt
    • Zhang CM, Chen XH, Wang B, et al. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt. Acta Pharmacol Sin. 2009;30: 120-124.
    • (2009) Acta Pharmacol Sin. , vol.30 , pp. 120-124
    • Zhang, C.M.1    Chen, X.H.2    Wang, B.3
  • 6
    • 78650029935 scopus 로고    scopus 로고
    • Effects of NYGGF4 knockdown on insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes
    • Zhang CM, Zeng XQ, Zhang R, et al. Effects of NYGGF4 knockdown on insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. J Bioenerg Biomembr. 2010;42:433-439.
    • (2010) J Bioenerg Biomembr. , vol.42 , pp. 433-439
    • Zhang, C.M.1    Zeng, X.Q.2    Zhang, R.3
  • 7
    • 77956967336 scopus 로고    scopus 로고
    • NYGGF4 homologous gene expression in 3T3-L1 adipocytes: Regulation by FFA and adipokines
    • Zhao YP, Zhang CM, Zhu C, et al. NYGGF4 homologous gene expression in 3T3-L1 adipocytes: regulation by FFA and adipokines. Mol Biol Rep. 2010;37:3291-3296.
    • (2010) Mol Biol Rep. , vol.37 , pp. 3291-3296
    • Zhao, Y.P.1    Zhang, C.M.2    Zhu, C.3
  • 8
    • 79851516706 scopus 로고    scopus 로고
    • Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway
    • Wu WL, Gan WH, Tong ML, et al. Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. Mol Genet Metab. 2011;102: 374-377.
    • (2011) Mol Genet Metab. , vol.102 , pp. 374-377
    • Wu, W.L.1    Gan, W.H.2    Tong, M.L.3
  • 9
    • 84863880301 scopus 로고    scopus 로고
    • Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/AKT insulin pathway
    • Zeng XQ, Zhang CM, Tong ML, et al. Knockdown of NYGGF4 increases glucose transport in C2C12 mice skeletal myocytes by activation IRS-1/PI3K/AKT insulin pathway. J Bioenerg Biomembr. 2012;44:351-355.
    • (2012) J Bioenerg Biomembr. , vol.44 , pp. 351-355
    • Zeng, X.Q.1    Zhang, C.M.2    Tong, M.L.3
  • 10
    • 82455219487 scopus 로고    scopus 로고
    • Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins
    • Lokireddy S, Mouly V, Butler-Browne G, et al. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol. 2011;301:C1316-C1324.
    • (2011) Am J Physiol Cell Physiol. , vol.301
    • Lokireddy, S.1    Mouly, V.2    Butler-Browne, G.3
  • 11
    • 80052536289 scopus 로고    scopus 로고
    • Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMPactivated protein kinase signalling pathway
    • Zhang C, McFarlane C, Lokireddy S, et al. Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMPactivated protein kinase signalling pathway. Diabetologia. 2011; 54:1491-1501.
    • (2011) Diabetologia. , vol.54 , pp. 1491-1501
    • Zhang, C.1    McFarlane, C.2    Lokireddy, S.3
  • 12
    • 84856725443 scopus 로고    scopus 로고
    • Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice
    • Zhang C, McFarlane C, Lokireddy S, et al. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia. 2012;55:183-193.
    • (2012) Diabetologia. , vol.55 , pp. 183-193
    • Zhang, C.1    McFarlane, C.2    Lokireddy, S.3
  • 13
    • 0017759258 scopus 로고
    • Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle
    • Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977;270: 725-727.
    • (1977) Nature. , vol.270 , pp. 725-727
    • Yaffe, D.1    Saxel, O.2
  • 14
    • 40649124537 scopus 로고    scopus 로고
    • Replicative aging down-regulates the myogenic regulatory factors in human myoblasts
    • Bigot A, Jacquemin V, Debacq-Chainiaux F, et al. Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell. 2008;100:189-199.
    • (2008) Biol Cell. , vol.100 , pp. 189-199
    • Bigot, A.1    Jacquemin, V.2    Debacq-Chainiaux, F.3
  • 16
    • 79959845081 scopus 로고    scopus 로고
    • Human myostatin negatively regulates human myoblast growth and differentiation
    • McFarlane C, Hui GZ, Amanda WZ, et al. Human myostatin negatively regulates human myoblast growth and differentiation. Am J Physiol Cell Physiol. 2011;301:C195-C203.
    • (2011) Am J Physiol Cell Physiol. , vol.301
    • McFarlane, C.1    Hui, G.Z.2    Amanda, W.Z.3
  • 17
    • 33749254273 scopus 로고    scopus 로고
    • Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism
    • McFarlane C, Plummer E, Thomas M, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism. J Cell Physiol. 2006;209:501-514.
    • (2006) J Cell Physiol. , vol.209 , pp. 501-514
    • McFarlane, C.1    Plummer, E.2    Thomas, M.3
  • 18
    • 0038532298 scopus 로고    scopus 로고
    • A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids
    • Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003;278:10297-10303.
    • (2003) J Biol Chem. , vol.278 , pp. 10297-10303
    • Chavez, J.A.1    Knotts, T.A.2    Wang, L.P.3
  • 19
    • 80054966387 scopus 로고    scopus 로고
    • Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting
    • Lokireddy S, McFarlane C, Ge X, et al. Myostatin induces degradation of sarcomeric proteins through a Smad3 signaling mechanism during skeletal muscle wasting. Mol Endocrinol. 2011;25: 1936-1949.
    • (2011) Mol Endocrinol. , vol.25 , pp. 1936-1949
    • Lokireddy, S.1    McFarlane, C.2    Ge, X.3
  • 20
    • 84871426886 scopus 로고    scopus 로고
    • The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli
    • Lokireddy S, Wijesoma IW, Teng S, et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell metabolism. 2012;16:613-624.
    • (2012) Cell metabolism. , vol.16 , pp. 613-624
    • Lokireddy, S.1    Wijesoma, I.W.2    Teng, S.3
  • 21
    • 84859771319 scopus 로고    scopus 로고
    • Peroxisome proliferatoractivated receptorα/β induces myogenesis by modulating myostatin activity
    • Bonala S, Lokireddy S, Arigela H, et al. Peroxisome proliferatoractivated receptorα/β induces myogenesis by modulating myostatin activity. J Biol Chem. 2012;287:12935-12951.
    • (2012) J Biol Chem. , vol.287 , pp. 12935-12951
    • Bonala, S.1    Lokireddy, S.2    Arigela, H.3
  • 23
    • 81155152456 scopus 로고    scopus 로고
    • Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB
    • Sriram S, Subramanian S, Sathiakumar D, et al. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell. 2011;10:931-948.
    • (2011) Aging Cell. , vol.10 , pp. 931-948
    • Sriram, S.1    Subramanian, S.2    Sathiakumar, D.3
  • 24
    • 74349086854 scopus 로고    scopus 로고
    • Gene expression profile of human skeletal muscle and adipose tissue of Chinese Han patients with type 2 diabetes mellitus
    • Yang YL, Xiang RL, Yang C, et al. Gene expression profile of human skeletal muscle and adipose tissue of Chinese Han patients with type 2 diabetes mellitus. Biomed Environ Sci. 2009;22:359-368.
    • (2009) Biomed Environ Sci. , vol.22 , pp. 359-368
    • Yang, Y.L.1    Xiang, R.L.2    Yang, C.3
  • 25
    • 77449155964 scopus 로고    scopus 로고
    • Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes
    • Hwang H, Bowen BP, Lefort N, et al. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes. 2010;59:33-42.
    • (2010) Diabetes. , vol.59 , pp. 33-42
    • Hwang, H.1    Bowen, B.P.2    Lefort, N.3
  • 26
    • 0036266251 scopus 로고    scopus 로고
    • Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment
    • Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS. Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes. 2002;51:1913-1920.
    • (2002) Diabetes. , vol.51 , pp. 1913-1920
    • Sreekumar, R.1    Halvatsiotis, P.2    Schimke, J.C.3    Nair, K.S.4
  • 27
    • 47249110739 scopus 로고    scopus 로고
    • Gene expression profiling of human skeletal muscle in response to stabilized weight loss
    • Larrouy D, Barbe P, Valle C, et al. Gene expression profiling of human skeletal muscle in response to stabilized weight loss. Am J Clin Nutr. 2008;88:125-132.
    • (2008) Am J Clin Nutr. , vol.88 , pp. 125-132
    • Larrouy, D.1    Barbe, P.2    Valle, C.3
  • 28
    • 39149094929 scopus 로고    scopus 로고
    • Identification and functional analysis of CBLB mutations in type 1 diabetes
    • Yokoi N, Fujiwara Y, Wang HY, et al. Identification and functional analysis of CBLB mutations in type 1 diabetes. Biochem Biophys Res Commun. 2008;368:37-42.
    • (2008) Biochem Biophys Res Commun. , vol.368 , pp. 37-42
    • Yokoi, N.1    Fujiwara, Y.2    Wang, H.Y.3
  • 29
    • 3242795791 scopus 로고    scopus 로고
    • Polymorphic variation in the CBLB gene in human type 1 diabetes
    • Kosoy R, Yokoi N, Seino S, Concannon P. Polymorphic variation in the CBLB gene in human type 1 diabetes. Genes Immun. 2004;5: 232-235.
    • (2004) Genes Immun. , vol.5 , pp. 232-235
    • Kosoy, R.1    Yokoi, N.2    Seino, S.3    Concannon, P.4
  • 30
    • 79551589284 scopus 로고    scopus 로고
    • Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet
    • Tan CK, Leuenberger N, Tan MJ, et al. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes. 2011;60:464-476.
    • (2011) Diabetes. , vol.60 , pp. 464-476
    • Tan, C.K.1    Leuenberger, N.2    Tan, M.J.3
  • 31
    • 33745868322 scopus 로고    scopus 로고
    • Exercise training and calorie restriction increase SREBP-1 expression and intramuscular triglyceride in skeletal muscle
    • Nadeau KJ, Ehlers LB, Aguirre LE, et al. Exercise training and calorie restriction increase SREBP-1 expression and intramuscular triglyceride in skeletal muscle. Am J Physiol Endocrinol Metab. 2006;291:E90-E98.
    • (2006) Am J Physiol Endocrinol Metab. , vol.291
    • Nadeau, K.J.1    Ehlers, L.B.2    Aguirre, L.E.3
  • 32
    • 0036228456 scopus 로고    scopus 로고
    • Human obesity and type 2. Diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-α
    • Sewter C, Berger D, Considine RV, et al. Human obesity and type 2. diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-α. Diabetes. 2002;51:1035-1041.
    • (2002) Diabetes , vol.51 , pp. 1035-1041
    • Sewter, C.1    Berger, D.2    Considine, R.V.3
  • 33
    • 0035908632 scopus 로고    scopus 로고
    • C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus
    • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286:327-334.
    • (2001) JAMA. , vol.286 , pp. 327-334
    • Pradhan, A.D.1    Manson, J.E.2    Rifai, N.3    Buring, J.E.4    Ridker, P.M.5
  • 34
    • 0035852783 scopus 로고    scopus 로고
    • Myozenin: An α-actinin-and γ-filamin-binding protein of skeletal muscle Z lines
    • Takada F, Vander Woude DL, Tong HQ, et al. Myozenin: an α-actinin-and γ-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci USA. 2001;98:1595-1600.
    • (2001) Proc Natl Acad Sci USA. , vol.98 , pp. 1595-1600
    • Takada, F.1    Vander Woude, D.L.2    Tong, H.Q.3
  • 36
    • 0032779156 scopus 로고    scopus 로고
    • Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM
    • Carvalho E, Jansson PA, Axelsen M, et al. Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J. 1999;13:2173-2178.
    • (1999) FASEB J. , vol.13 , pp. 2173-2178
    • Carvalho, E.1    Jansson, P.A.2    Axelsen, M.3
  • 37
    • 73049107663 scopus 로고    scopus 로고
    • Antidiabetic effects of IGFBP2, a leptin-regulated gene
    • Hedbacker K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab. 2010;11:11-22.
    • (2010) Cell Metab. , vol.11 , pp. 11-22
    • Hedbacker, K.1    Birsoy, K.2    Wysocki, R.W.3
  • 38
    • 84863270429 scopus 로고    scopus 로고
    • Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure
    • Liu W, Singh R, Choi CS, et al. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem. 2012;287:7213-7223.
    • (2012) J Biol Chem. , vol.287 , pp. 7213-7223
    • Liu, W.1    Singh, R.2    Choi, C.S.3
  • 39
    • 45549109223 scopus 로고    scopus 로고
    • Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice
    • Allen DL, Cleary AS, Speaker KJ, et al. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab. 2008;294:E918-E927.
    • (2008) Am J Physiol Endocrinol Metab. , vol.294
    • Allen, D.L.1    Cleary, A.S.2    Speaker, K.J.3
  • 40
    • 69049097939 scopus 로고    scopus 로고
    • Upregulation of myostatin gene expression in streptozotocin-induced type 1 diabetes mice is attenuated by insulin
    • Chen Y, Cao L, Ye J, Zhu D. Upregulation of myostatin gene expression in streptozotocin-induced type 1 diabetes mice is attenuated by insulin. Biochem Biophys Res Commun. 2009;388:112-116.
    • (2009) Biochem Biophys Res Commun. , vol.388 , pp. 112-116
    • Chen, Y.1    Cao, L.2    Ye, J.3    Zhu, D.4
  • 41
    • 63249100559 scopus 로고    scopus 로고
    • Increased secretion and expression of myostatin in skeletal muscle from extremely obese women
    • Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes. 2009;58:30-38.
    • (2009) Diabetes. , vol.58 , pp. 30-38
    • Hittel, D.S.1    Berggren, J.R.2    Shearer, J.3    Boyle, K.4    Houmard, J.A.5
  • 42
    • 77954426713 scopus 로고    scopus 로고
    • Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes
    • Zhao Y, Zhang C, Chen X, et al. Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3-L1 adipocytes. Mol Cell Biochem. 2010;340:41-48.
    • (2010) Mol Cell Biochem. , vol.340 , pp. 41-48
    • Zhao, Y.1    Zhang, C.2    Chen, X.3
  • 43
    • 77956967336 scopus 로고    scopus 로고
    • NYGGF4 homologous gene expression in 3T3-L1 adipocytes: Regulation by FFA and adipokines
    • Zhao YP, Zhang CM, Zhu C, et al. NYGGF4 homologous gene expression in 3T3-L1 adipocytes: regulation by FFA and adipokines. Mol Biol Rep. 2010;37:3291-3296.
    • (2010) Mol Biol Rep. , vol.37 , pp. 3291-3296
    • Zhao, Y.P.1    Zhang, C.M.2    Zhu, C.3
  • 44
    • 0037382786 scopus 로고    scopus 로고
    • Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome
    • Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917-923.
    • (2003) Hepatology. , vol.37 , pp. 917-923
    • Marchesini, G.1    Bugianesi, E.2    Forlani, G.3
  • 45
    • 79851516706 scopus 로고    scopus 로고
    • Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway
    • Wu WL, Gan WH, Tong ML, et al. Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. Mol Genet Metab. 2011;102: 374-377.
    • (2011) Mol Genet Metab. , vol.102 , pp. 374-377
    • Wu, W.L.1    Gan, W.H.2    Tong, M.L.3
  • 46
    • 64849098867 scopus 로고    scopus 로고
    • Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt
    • Zhang CM, Chen XH, Wang B, et al. Over-expression of NYGGF4 inhibits glucose transport in 3T3-L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt. Acta Pharmacol Sin. 2009;30: 120-124.
    • (2009) Acta Pharmacol Sin. , vol.30 , pp. 120-124
    • Zhang, C.M.1    Chen, X.H.2    Wang, B.3
  • 47
    • 70350277495 scopus 로고    scopus 로고
    • Effects of NYGGF4 gene over-expression on the insulin sensitivity and secretory function of adipocytes
    • Zhang CM, Qiu J, Chen XH, Wang B, Zhang M, Guo XR. [Effects of NYGGF4 gene over-expression on the insulin sensitivity and secretory function of adipocytes]. Zhongguo Dang Dai Er Ke Za Zhi. 2009;11:846-849.
    • (2009) Zhongguo Dang Dai Er Ke Za Zhi. , vol.11 , pp. 846-849
    • Zhang, C.M.1    Qiu, J.2    Chen, X.H.3    Wang, B.4    Zhang, M.5    Guo, X.R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.