메뉴 건너뛰기




Volumn 59, Issue 9, 2013, Pages 6099-6110

Deterministic feature selection for k-means clustering

Author keywords

Clustering methods; dimensionality reduction; unsupervised learning

Indexed keywords

CLUSTERING METHODS; DETERMINISTIC METHODS; DIMENSIONALITY REDUCTION; EMPIRICAL PERFORMANCE; FEATURE SELECTION ALGORITHM; K-MEANS CLUSTERING; RELATIVE ERRORS;

EID: 84882757134     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2013.2255021     Document Type: Article
Times cited : (67)

References (41)
  • 10
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A. D. Aspremont, L. E. Ghaoui,M. Jordan, and G. Lanckriet, "A direct formulation for sparse PCA using semidefinite programming," SIAM Rev., vol. 49, no. 3, pp. 434-434, 2007.
    • (2007) SIAM Rev. , vol.49 , Issue.3 , pp. 434-434
    • Aspremont, A.D.1    Ghaouim. Jordan, L.E.2    Lanckriet, G.3
  • 14
    • 0016484071 scopus 로고
    • An optimal set of discriminant vectors
    • Mar
    • D. H. Foley and J. W. Sammon, "An optimal set of discriminant vectors," IEEE Trans. Comput., vol. C-24, no. 3, pp. 281-289, Mar. 1975.
    • (1975) IEEE Trans. Comput. , vol.24 , Issue.3 , pp. 281-289
    • Foley, D.H.1    Sammon, J.W.2
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 17
    • 0043071223 scopus 로고
    • Note on the generalized inverse of a matrix product
    • T.N. E. Greville, "Note on the generalized inverse of a matrix product," SIAM Rev., vol. 8, no. 4, pp. 518-521, 1966.
    • (1966) SIAM Rev. , vol.8 , Issue.4 , pp. 518-521
    • Greville, T.N.E.1
  • 18
  • 20
    • 33244482464 scopus 로고    scopus 로고
    • Smaller coresets for k-median and k-means clustering
    • DOI 10.1145/1064092.1064114, Proceedings of the 21st Annual Symposium on Computational Geometry, SCG'05
    • S. Har-Peled and A. Kushal, "Smaller coresets for -median and -means clustering," in Proc. 21st Annu. Symp. Comput. Geometry, 2005, pp. 126-134. (Pubitemid 43283453)
    • (2005) Proceedings of the Annual Symposium on Computational Geometry , pp. 126-134
    • Har-Peled, S.1    Kushal, A.2
  • 24
    • 0000146283 scopus 로고
    • Discarding variables in a principal component analysis - Part I: Artificial data
    • I. Jolliffe, "Discarding variables in a principal component analysis - Part I: Artificial data," Appl. Statist., vol. 21, no. 2, pp. 160-173, 1972.
    • (1972) Appl. Statist. , vol.21 , Issue.2 , pp. 160-173
    • Jolliffe, I.1
  • 25
    • 0002008085 scopus 로고
    • Discarding variables in a principal component analysis - Part II: Real data
    • I. Jolliffe, "Discarding variables in a principal component analysis - Part II: Real data," Appl. Statist., vol. 22, no. 1, pp. 21-31, 1973.
    • (1973) Appl. Statist. , vol.22 , Issue.1 , pp. 21-31
    • Jolliffe, I.1
  • 26
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • W. Krzanowski, "Selection of variables to preserve multivariate data structure, using principal components," Appl. Statist., vol. 36, no. 1, pp. 22-33, 1987.
    • (1987) Appl. Statist. , vol.36 , Issue.1 , pp. 22-33
    • Krzanowski, W.1
  • 27
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 +)-approximation algorithm for k-means clustering in any dimensions
    • Proceedings - 45th Annual IEEE Symposium on Foundations of Computer Sciences, FOCS 2004
    • A. Kumar, Y. Sabharwal, and S. Sen, "A simple linear time -approximation algorithm for k-means clustering in any dimensions," in Proc. 45th Annu. IEEE Symp. Found. Comput. Sci., 2004, pp. 454-462. (Pubitemid 40575306)
    • (2004) Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 28
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Mar
    • S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.
    • (1982) IEEE Trans. Inf. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 31
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Dec
    • A. Malhi and R. Gao, "PCA-based feature selection scheme for machine defect classification," IEEE Trans. Instrum. Meas., vol. 53, no. 6, pp. 1517-1525, Dec. 2004.
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.2
  • 32
    • 17444406668 scopus 로고    scopus 로고
    • Identifying critical variables of principal components for unsupervised feature selection
    • DOI 10.1109/TSMCB.2004.843269
    • K.Mao, "Identifying critical variables of principal components for unsupervised feature selection," IEEE Trans. Syst., Man, Cybern., vol. 35, no. 2, pp. 339-344, Apr. 2005. (Pubitemid 40535916)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.2 , pp. 339-344
    • Mao, K.Z.1
  • 35
    • 0033541884 scopus 로고    scopus 로고
    • Random vectors in the isotropic position
    • M. Rudelson, "Random vectors in the isotropic position," J. Funct. Anal., vol. 164, no. 1, pp. 60-72, 1999.
    • (1999) J. Funct. Anal. , vol.164 , Issue.1 , pp. 60-72
    • Rudelson, M.1
  • 36
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices: An approach through geometric functional analysis
    • M. Rudelson and R. Vershynin, "Sampling from large matrices: An approach through geometric functional analysis," J. ACM, vol. 54, no. 4, 2007.
    • (2007) J. ACM , vol.54 , Issue.4
    • Rudelson, M.1    Vershynin, R.2
  • 37
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • A. Smola and B. Schölkopf, "Sparse greedy matrix approximation for machine learning," in Proc. 7th Int. Conf. Mach. Learn., 2000, pp. 911-918.
    • (2000) Proc. 7th Int. Conf. Mach. Learn. , pp. 911-918
    • Smola, A.1    Schölkopf, B.2
  • 39
    • 21244444543 scopus 로고    scopus 로고
    • Gene selection for microarray data analysis using principal component analysis
    • DOI 10.1002/sim.2082
    • A.Wang and E. A. Gehan, "Gene selection formicroarray data analysis using principal component analysis," Stat. Med., vol. 24, no. 13, pp. 2069-2087, Jul. 2005. (Pubitemid 40895560)
    • (2005) Statistics in Medicine , vol.24 , Issue.13 , pp. 2069-2087
    • Wang, A.1    Gehan, E.A.2
  • 40
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X.Wu et al., "Top 10 algorithms in data mining," Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1
  • 41
    • 38349093039 scopus 로고    scopus 로고
    • Constraint score: A new filter method for feature selection with pairwise constraints
    • D. Zhang, S. Chen, and Z.-H. Zhou, "Constraint score: A new filter method for feature selection with pairwise constraints," Pattern Recognit., vol. 41, no. 5, pp. 1440-1451, 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.