-
1
-
-
70449722914
-
Adaptive sampling for k-means clustering
-
A. Aggarwal, A. Deshpande, and R. Kannan, "Adaptive sampling for k-means clustering," in Proc. 12th Int. Workshop 13th Int. Workshop Approximation, Randomization, Combinatorial Optimization, 2009, pp. 15-28.
-
(2009)
Proc. 12th Int. Workshop 13th Int. Workshop Approximation, Randomization, Combinatorial Optimization
, pp. 15-28
-
-
Aggarwal, A.1
Deshpande, A.2
Kannan, R.3
-
3
-
-
70350682021
-
Twice-Ramanujan sparsifiers
-
J. Batson, D. Spielman, and N. Srivastava, "Twice-Ramanujan sparsifiers," in Proc. ACM Symp. Theory Comput., 2009, pp. 255-262.
-
(2009)
Proc. ACM Symp. Theory Comput.
, pp. 255-262
-
-
Batson, J.1
Spielman, D.2
Srivastava, N.3
-
4
-
-
84863303500
-
Near-optimal column-based matrix reconstruction
-
C. Boutsidis, P. Drineas, and M. Magdon-Ismail, "Near-optimal column-based matrix reconstruction," in Proc. IEEE 52nd Annu. Symp. Foundation Comput. Sci., 2011, pp. 305-314.
-
(2011)
Proc. IEEE 52nd Annu. Symp. Foundation Comput. Sci.
, pp. 305-314
-
-
Boutsidis, C.1
Drineas, P.2
Magdon-Ismail, M.3
-
6
-
-
78650966380
-
Unsupervised feature selection for the -means clustering problem
-
C. Boutsidis, M. W. Mahoney, and P. Drineas, "Unsupervised feature selection for the -means clustering problem," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 153-161.
-
(2009)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 153-161
-
-
Boutsidis, C.1
Mahoney, M.W.2
Drineas, P.3
-
8
-
-
84882784979
-
Stochastic dimensionality reduction for-means clustering
-
C. Boutsidis,A. Zouzias, M. W. Mahoney, and P.Drineas, "Stochastic dimensionality reduction for -means clustering," in Manuscript, Under Review. :, 2011.
-
(2011)
Manuscript, under Review.
-
-
Boutsidis, A.1
Zouzias, C.2
Mahoney, M.W.3
Drineas, P.4
-
10
-
-
34548514458
-
A direct formulation for sparse PCA using semidefinite programming
-
A. D. Aspremont, L. E. Ghaoui,M. Jordan, and G. Lanckriet, "A direct formulation for sparse PCA using semidefinite programming," SIAM Rev., vol. 49, no. 3, pp. 434-434, 2007.
-
(2007)
SIAM Rev.
, vol.49
, Issue.3
, pp. 434-434
-
-
Aspremont, A.D.1
Ghaouim. Jordan, L.E.2
Lanckriet, G.3
-
11
-
-
58849107202
-
Relative-error CUR matrix decompositions
-
P. Drineas, M. Mahoney, and S. Muthukrishnan, "Relative-error CUR matrix decompositions," SIAM J. Matrix Anal. Appl., vol. 30, pp. 844-881, 2008.
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 844-881
-
-
Drineas, P.1
Mahoney, M.2
Muthukrishnan, S.3
-
12
-
-
0032800925
-
Clustering in large graphs and matrices
-
Discrete Algorithms
-
P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, "Clustering in large graphs and matrices," in Proc. 10th Annu. ACM-SIAM Symp. Discrete Algorithms, 1999, pp. 291-299.
-
(1999)
Proc. 10th Annu. ACM-SIAM Symp.
, pp. 291-299
-
-
Drineas, P.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
Vinay, V.5
-
14
-
-
0016484071
-
An optimal set of discriminant vectors
-
Mar
-
D. H. Foley and J. W. Sammon, "An optimal set of discriminant vectors," IEEE Trans. Comput., vol. C-24, no. 3, pp. 281-289, Mar. 1975.
-
(1975)
IEEE Trans. Comput.
, vol.24
, Issue.3
, pp. 281-289
-
-
Foley, D.H.1
Sammon, J.W.2
-
16
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
17
-
-
0043071223
-
Note on the generalized inverse of a matrix product
-
T.N. E. Greville, "Note on the generalized inverse of a matrix product," SIAM Rev., vol. 8, no. 4, pp. 518-521, 1966.
-
(1966)
SIAM Rev.
, vol.8
, Issue.4
, pp. 518-521
-
-
Greville, T.N.E.1
-
19
-
-
84898964855
-
Result analysis of the NIPS 2003 feature selection challenge
-
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, "Result analysis of the NIPS 2003 feature selection challenge," in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 545-552.
-
(2005)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 545-552
-
-
Guyon, I.1
Gunn, S.2
Ben-Hur, A.3
Dror, G.4
-
20
-
-
33244482464
-
Smaller coresets for k-median and k-means clustering
-
DOI 10.1145/1064092.1064114, Proceedings of the 21st Annual Symposium on Computational Geometry, SCG'05
-
S. Har-Peled and A. Kushal, "Smaller coresets for -median and -means clustering," in Proc. 21st Annu. Symp. Comput. Geometry, 2005, pp. 126-134. (Pubitemid 43283453)
-
(2005)
Proceedings of the Annual Symposium on Computational Geometry
, pp. 126-134
-
-
Har-Peled, S.1
Kushal, A.2
-
24
-
-
0000146283
-
Discarding variables in a principal component analysis - Part I: Artificial data
-
I. Jolliffe, "Discarding variables in a principal component analysis - Part I: Artificial data," Appl. Statist., vol. 21, no. 2, pp. 160-173, 1972.
-
(1972)
Appl. Statist.
, vol.21
, Issue.2
, pp. 160-173
-
-
Jolliffe, I.1
-
25
-
-
0002008085
-
Discarding variables in a principal component analysis - Part II: Real data
-
I. Jolliffe, "Discarding variables in a principal component analysis - Part II: Real data," Appl. Statist., vol. 22, no. 1, pp. 21-31, 1973.
-
(1973)
Appl. Statist.
, vol.22
, Issue.1
, pp. 21-31
-
-
Jolliffe, I.1
-
26
-
-
0002457803
-
Selection of variables to preserve multivariate data structure, using principal components
-
W. Krzanowski, "Selection of variables to preserve multivariate data structure, using principal components," Appl. Statist., vol. 36, no. 1, pp. 22-33, 1987.
-
(1987)
Appl. Statist.
, vol.36
, Issue.1
, pp. 22-33
-
-
Krzanowski, W.1
-
27
-
-
11244288693
-
A simple linear time (1 +)-approximation algorithm for k-means clustering in any dimensions
-
Proceedings - 45th Annual IEEE Symposium on Foundations of Computer Sciences, FOCS 2004
-
A. Kumar, Y. Sabharwal, and S. Sen, "A simple linear time -approximation algorithm for k-means clustering in any dimensions," in Proc. 45th Annu. IEEE Symp. Found. Comput. Sci., 2004, pp. 454-462. (Pubitemid 40575306)
-
(2004)
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
28
-
-
0020102027
-
Least squares quantization in PCM
-
Mar
-
S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.
-
(1982)
IEEE Trans. Inf. Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.1
-
29
-
-
37849000197
-
Feature selection using principal feature analysis
-
Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, "Feature selection using principal feature analysis," in Proc. 15th Int. Conf. Multimedia, 2007, pp. 301-304.
-
(2007)
Proc. 15th Int. Conf. Multimedia
, pp. 301-304
-
-
Lu, Y.1
Cohen, I.2
Zhou, X.S.3
Tian, Q.4
-
31
-
-
10244259183
-
PCA-based feature selection scheme for machine defect classification
-
Dec
-
A. Malhi and R. Gao, "PCA-based feature selection scheme for machine defect classification," IEEE Trans. Instrum. Meas., vol. 53, no. 6, pp. 1517-1525, Dec. 2004.
-
(2004)
IEEE Trans. Instrum. Meas.
, vol.53
, Issue.6
, pp. 1517-1525
-
-
Malhi, A.1
Gao, R.2
-
32
-
-
17444406668
-
Identifying critical variables of principal components for unsupervised feature selection
-
DOI 10.1109/TSMCB.2004.843269
-
K.Mao, "Identifying critical variables of principal components for unsupervised feature selection," IEEE Trans. Syst., Man, Cybern., vol. 35, no. 2, pp. 339-344, Apr. 2005. (Pubitemid 40535916)
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.35
, Issue.2
, pp. 339-344
-
-
Mao, K.Z.1
-
34
-
-
35348899361
-
The effectiveness of Lloyd-type methods for the k-means problem
-
R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, "The effectiveness of Lloyd-type methods for the k-means problem," in Proc. IEEE 47th Annu. Symp. Found. Comput. Sci., 2006, pp. 165-176.
-
(2006)
Proc. IEEE 47th Annu. Symp. Found. Comput. Sci.
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
35
-
-
0033541884
-
Random vectors in the isotropic position
-
M. Rudelson, "Random vectors in the isotropic position," J. Funct. Anal., vol. 164, no. 1, pp. 60-72, 1999.
-
(1999)
J. Funct. Anal.
, vol.164
, Issue.1
, pp. 60-72
-
-
Rudelson, M.1
-
36
-
-
34547728320
-
Sampling from large matrices: An approach through geometric functional analysis
-
M. Rudelson and R. Vershynin, "Sampling from large matrices: An approach through geometric functional analysis," J. ACM, vol. 54, no. 4, 2007.
-
(2007)
J. ACM
, vol.54
, Issue.4
-
-
Rudelson, M.1
Vershynin, R.2
-
37
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
A. Smola and B. Schölkopf, "Sparse greedy matrix approximation for machine learning," in Proc. 7th Int. Conf. Mach. Learn., 2000, pp. 911-918.
-
(2000)
Proc. 7th Int. Conf. Mach. Learn.
, pp. 911-918
-
-
Smola, A.1
Schölkopf, B.2
-
39
-
-
21244444543
-
Gene selection for microarray data analysis using principal component analysis
-
DOI 10.1002/sim.2082
-
A.Wang and E. A. Gehan, "Gene selection formicroarray data analysis using principal component analysis," Stat. Med., vol. 24, no. 13, pp. 2069-2087, Jul. 2005. (Pubitemid 40895560)
-
(2005)
Statistics in Medicine
, vol.24
, Issue.13
, pp. 2069-2087
-
-
Wang, A.1
Gehan, E.A.2
-
40
-
-
37549018049
-
Top 10 algorithms in data mining
-
X.Wu et al., "Top 10 algorithms in data mining," Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
-
(2008)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
-
41
-
-
38349093039
-
Constraint score: A new filter method for feature selection with pairwise constraints
-
D. Zhang, S. Chen, and Z.-H. Zhou, "Constraint score: A new filter method for feature selection with pairwise constraints," Pattern Recognit., vol. 41, no. 5, pp. 1440-1451, 2008.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1440-1451
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.-H.3
|