메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2384-2389

Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm

Author keywords

Estimation of Distribution Algorithms; Feature Selection; Protein Function Prediction; Weighted Feature Ranking

Indexed keywords

BENCHMARK CLASSIFICATION; CHEMICAL AND BIOLOGICALS; ESTIMATION OF DISTRIBUTION ALGORITHMS; FEATURE SELECTION PROBLEM; HYBRID FEATURE SELECTIONS; PROTEIN FUNCTION PREDICTION; QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS; WEIGHTED FEATURES;

EID: 84881600564     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2013.6557854     Document Type: Conference Paper
Times cited : (8)

References (37)
  • 1
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • D. K. Agrafiotis., W Cedeno. "Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry 45, no. 5, 2002, 1098-1107.
    • (2002) Journal of Medicinal Chemistry , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 2
    • 0042856574 scopus 로고    scopus 로고
    • Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression
    • W. Cedeño, D. K. Agrafiotis. "Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. Journal of computer-aided molecular design 17, no. 2, 2003, 255-263.
    • (2003) Journal of Computer-aided Molecular Design , vol.17 , Issue.2 , pp. 255-263
    • Cedeño, W.1    Agrafiotis, D.K.2
  • 8
    • 84866874915 scopus 로고    scopus 로고
    • Biogeography-based informative gene se lection and cancer classification using SVM and Random Forests
    • 10-15 June
    • S. Nikumbh, S. Ghosh, V. K. Jayaraman. "Biogeography-based informative gene se lection and cancer classification using SVM and Random Forests IEEE Congress on Evolutionary Computation (CEC), 10-15 June 2012, pp.1-6.
    • (2012) IEEE Congress on Evolutionary Computation (CEC) , pp. 1-6
    • Nikumbh, S.1    Ghosh, S.2    Jayaraman, V.K.3
  • 10
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions I. Binary parameters
    • Eiben, A., B̈ack, T., Shoenauer, M., & Schwefel, H. (Eds.) Berlin: Springer Verlag
    • H. Muhlenbein, G. Paaß. "From recombination of genes to the estimation of distributions I. Binary parameters . In Eiben, A., B̈ack, T., Shoenauer, M., & Schwefel, H. (Eds.), Parallel Problem Solving from Nature (pp. 178-187). Berlin: Springer Verlag, 1996.
    • (1996) Parallel Problem Solving from Nature , pp. 178-187
    • Muhlenbein, H.1    Paaß, G.2
  • 11
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive l earning
    • Pittsburgh, PA: Carnegie Mellon University
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive l earning . (Tech. Rep. No. CMU-CS-94-163). Pittsburgh, PA: Carnegie Mellon University, 1994.
    • (1994) Tech. Rep. No. CMU-CS-94-163
    • Baluja, S.1
  • 18
    • 66849131414 scopus 로고    scopus 로고
    • Controlling feature selection in random forests of decision trees using a genetic algorithm: Classification of class i MHC peptides
    • L. Hansen, E. A. Lee, K. Hestir, L. T. Williams, D. Farrelly. "Controlling feature selection in random forests of decision trees using a genetic algorithm: classification of class I MHC peptides." Combinatorial chemistry & high throughput screening 12, no. 5, 2009, 514-519.
    • (2009) Combinatorial Chemistry & High Throughput Screening , vol.12 , Issue.5 , pp. 514-519
    • Hansen, L.1    Lee, E.A.2    Hestir, K.3    Williams, L.T.4    Farrelly, D.5
  • 19
    • 77949879189 scopus 로고    scopus 로고
    • Exploring classification strategies with the CoePRa 2006 contest
    • O. Demir-Kavuk, H. Riedesel, E. Knapp. "Exploring classification strategies with the CoePRa 2006 contest. Bioinformatics 26, no. 5, 2010, 603-609.
    • (2010) Bioinformatics , vol.26 , Issue.5 , pp. 603-609
    • Demir-Kavuk, O.1    Riedesel, H.2    Knapp, E.3
  • 22
    • 78049281929 scopus 로고    scopus 로고
    • EDA-PSO: A hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization
    • E. Bengoetxea, P. Larrañaga. "EDA-PSO: a hybrid paradigm combining estimation of distribution algorithms and particle swarm optimization. " Swarm Intelligence. 2010, 4 16-423.
    • (2010) Swarm Intelligence , pp. 416-423
    • Bengoetxea, E.1    Larrañaga, P.2
  • 23
    • 65149095882 scopus 로고    scopus 로고
    • Research topics in discrete estimation of distribution algorithms based on factorizations
    • R. Santana,P. Larrañaga, J. A. Lozano. "Research topics in discrete estimation of distribution algorithms based on factorizations." Memetic Computing 1, no. 1, 2009, 35-54.
    • (2009) Memetic Computing , vol.1 , Issue.1 , pp. 35-54
    • Santana, R.1
  • 24
    • 67650501848 scopus 로고    scopus 로고
    • Estimation of distribution algorithms as logistic regression regularizers of microarray classifiers
    • C. Bielza, V. Robles, P. Larranaga. "Estimation of distribution algorithms as logistic regression regularizers of microarray classifiers." Methods Inf Med 48, no. 3 . 2009, 236-241.
    • (2009) Methods Inf Med , vol.48 , Issue.3 , pp. 236-241
    • Bielza, C.1    Robles, V.2    Larranaga, P.3
  • 26
    • 63149190185 scopus 로고    scopus 로고
    • Data mining: Concepts and techniques
    • J. Han, M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann, 2006.
    • (2006) Morgan Kaufmann
    • Han, J.1    Kamber, M.2
  • 28
    • 4344650509 scopus 로고    scopus 로고
    • Selection of the most useful subset of genes for gene expression-based classification
    • IEEE
    • T. K. Paul, H. Iba. "Selection of the most useful subset of genes for gene expression-based classification. In Evolutionary Computation, 2004. CEC2004. Congress on, vol. 2, 2004, pp. 2076-2083. IEEE,.
    • (2004) Evolutionary Computation 2004. CEC2004. Congress on , vol.2 , pp. 2076-2083
    • Paul, T.K.1    Iba, H.2
  • 31
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks
    • S. So, M. Karplus, "Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. Journal of Medicinal Chemistry 39, no. 7, 1996, 1521-1530.
    • (1996) Journal of Medicinal Chemistry , vol.39 , Issue.7 , pp. 1521-1530
    • So, S.1    Karplus, M.2
  • 32
    • 5444250595 scopus 로고    scopus 로고
    • QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine
    • C. X. Xue, R. S. Zhang, H. X. Liu, X. J. Yao, M. C. Liu, Z. D. Hu, and B. T. Fan, QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. Journal of chemical information and computer sciences 44, no. 5, 2004, 1693-1700.
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , Issue.5 , pp. 1693-1700
    • Xue, C.X.1    Zhang, R.S.2    Liu, H.X.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 33
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • S. P. Niculescu, Artificial neural networks and genetic algorithms in QSAR. " Journal of Mole cular Structure: THEOCHEM 622, no. 1, 2003, 71-83.
    • (2003) Journal of Mole Cular Structure: THEOCHEM , vol.622 , Issue.1 , pp. 71-83
    • Niculescu, S.P.1
  • 34
    • 79953327578 scopus 로고    scopus 로고
    • Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic n eural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM)
    • M. Fernandez, J. Caballero, L. Fernandez, and A. Sarai, "Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic n eural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Molecular diversity 15, no. 1, 2011, 269-289.
    • (2011) Molecular Diversity , vol.15 , Issue.1 , pp. 269-289
    • Fernandez, M.1    Caballero, J.2    Fernandez, L.3    Sarai, A.4
  • 36
    • 0036581948 scopus 로고    scopus 로고
    • Variable selection for QSAR by artificial ant colony systems
    • S. Izrailev and D. K. Agrafiotis, "Variable selection for QSAR by artificial ant colony systems.", SAR and QSAR in E nvironmental Research 13, no. 3-4, 2002,pp. 417-423.
    • (2002) SAR and QSAR in e Nvironmental Research , vol.13 , Issue.3-4 , pp. 417-423
    • Izrailev, S.1    Agrafiotis, D.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.