메뉴 건너뛰기




Volumn 21, Issue 1, 2002, Pages 5-20

A survey of optimization by building and using probabilistic models

Author keywords

Decomposable problems; Genetic algorithms; Genetic and evolutionary computation; Model building; Stochastic optimization

Indexed keywords

COMPUTATIONAL COMPLEXITY; GENETIC ALGORITHMS; MATHEMATICAL MODELS; POPULATION STATISTICS; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES;

EID: 0036180213     PISSN: 09266003     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1013500812258     Document Type: Article
Times cited : (515)

References (46)
  • 1
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA
    • (1994)
    • Baluja, S.1
  • 3
    • 0011876133 scopus 로고    scopus 로고
    • Continuous iterated density estimation evolutionary algorithms within the IDEA framework
    • Personal communication
    • (2000)
    • Bosman, P.A.1
  • 11
    • 0003722376 scopus 로고
    • Genetic algorithms in search, optimization, and machine learning
    • Addison-Wesley: Reading, MA
    • (1989)
    • Goldberg, D.E.1
  • 12
    • 0004058628 scopus 로고    scopus 로고
    • Genetic and evolutionary algorithms in the real world
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IlliGAL Report No. 99013
    • (1999)
    • Goldberg, D.E.1
  • 14
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the ECGA
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 99010
    • (1999)
    • Harik, G.1
  • 17
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Microsoft Research, Redmond, WA, Technical Report MSR-TR-94-09
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 19
    • 7744238595 scopus 로고    scopus 로고
    • OMEGA-ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random keys
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 2000004
    • (2000)
    • Knjazew, D.1    Goldberg, D.E.2
  • 31
    • 0003880774 scopus 로고    scopus 로고
    • Linkage problem, distribution estimation, and Bayesian networks
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 98013
    • (1998)
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 33
    • 4243965486 scopus 로고    scopus 로고
    • Bayesian optimization algorithm, population sizing, and time to convergence
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 2000001
    • (2000)
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 34
    • 0008522132 scopus 로고    scopus 로고
    • Hierarchical problem solving by the Bayesian optimization algorithms
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 2000002
    • (2000)
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 38
    • 0037854824 scopus 로고    scopus 로고
    • Bad codings and the utility of well-designed genetic algorithms
    • University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, IlliGAL Report No. 200007
    • (2000)
    • Rothlauf, F.1    Goldberg, D.E.2    Heinzl, A.3
  • 45
    • 0003493728 scopus 로고
    • Analysis and design of genetic algorithm
    • Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium
    • (1995)
    • Thierens, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.