메뉴 건너뛰기




Volumn 8743, Issue , 2013, Pages

Hyperspectral image unmixing via bilinear generalized approximate message passing

Author keywords

Approximate message passing; Hyperspectral image unmixing; Loopy belief propagation

Indexed keywords

BELIEF PROPAGATION; MAXIMUM PRINCIPLE; REMOTE SENSING; SPECTROSCOPY;

EID: 84881144384     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2015859     Document Type: Conference Paper
Times cited : (5)

References (26)
  • 1
    • 0020737529 scopus 로고
    • A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures
    • Johnson, P. E., Smith, M. O., Taylor-George, S., and Adams, J. B., "A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures, " Journal of Geophysical Research 88, 3557-3561 (1983).
    • (1983) Journal of Geophysical Research , vol.88 , pp. 3557-3561
    • Johnson, P.E.1    Smith, M.O.2    Taylor-George, S.3    Adams, J.B.4
  • 3
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Heinz, D. and Chang, C.-I., "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, " Geoscience and Remote Sensing, IEEE Transactions on 39(3), 529-545 (2001).
    • (2001) Geoscience and Remote Sensing, IEEE Transactions on , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.1    Chang, C.-I.2
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyper- spectral data
    • Winter, M. E., "N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyper- spectral data, " Proc. SPIE, 266-275 (1999).
    • (1999) Proc. SPIE , pp. 266-275
    • Winter, M.E.1
  • 10
    • 84858327678 scopus 로고    scopus 로고
    • Hyperspectral image unmixing using a multiresolution sticky hdp
    • Mittelman, R., Dobigeon, N., and Hero, A., "Hyperspectral image unmixing using a multiresolution sticky hdp, " Signal Processing, IEEE Transactions on 60(4), 1656-1671 (2012).
    • (2012) Signal Processing, IEEE Transactions on , vol.60 , Issue.4 , pp. 1656-1671
    • Mittelman, R.1    Dobigeon, N.2    Hero, A.3
  • 14
    • 73149095169 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing
    • (Nov)
    • Donoho, D. L., Maleki, A., and Montanari, A., "Message passing algorithms for compressed sensing, " Proc. Nat. Acad. Sci. 106, 18914-18919 (Nov. 2009).
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , pp. 18914-18919
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 15
    • 77954825041 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing: I. Motivation and construction
    • 1-5 (Jan)
    • Donoho, D. L., Maleki, A., and Montanari, A., "Message passing algorithms for compressed sensing: I. Motivation and construction, " in [Proc. Inform. Theory Workshop], 1-5 (Jan. 2010).
    • (2010) Proc. Inform. Theory Workshop
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 16
    • 80054799706 scopus 로고    scopus 로고
    • Generalized approximate message passing for estimation with random linear mixing
    • (Aug.), (See also arXiv:1010.5141)
    • Rangan, S., "Generalized approximate message passing for estimation with random linear mixing, " in [Proc. IEEE Int. Symp. Inform. Thy. ], (Aug. 2011). (See also arXiv:1010.5141).
    • (2011) Proc. IEEE Int. Symp. Inform. Thy.
    • Rangan, S.1
  • 17
    • 84862615894 scopus 로고    scopus 로고
    • Compressive imaging using approximate message passing and a Markov-tree prior
    • (to appear). (see also arXiv:1108.2632)
    • Som, S. and Schniter, P., "Compressive imaging using approximate message passing and a Markov-tree prior, " IEEE Trans. Signal Process. (to appear 2012). (see also arXiv:1108.2632).
    • (2012) IEEE Trans. Signal Process
    • Som, S.1    Schniter, P.2
  • 18
    • 84884837973 scopus 로고    scopus 로고
    • Approximate message passing for recovery of sparse signals with Markov-random- field support structure
    • presented at the, (Bellevue, WA) (July)
    • Som, S. and Schniter, P., "Approximate message passing for recovery of sparse signals with Markov-random- field support structure, " presented at the Internat. Conf. Mach. Learning, (Bellevue, WA) (July 2011).
    • (2011) Internat. Conf. Mach. Learning
    • Som, S.1    Schniter, P.2
  • 20
    • 82155163850 scopus 로고    scopus 로고
    • A message-passing receiver for BICM-OFDM over unknown clustered-sparse channels
    • (Dec)
    • Schniter, P., "A message-passing receiver for BICM-OFDM over unknown clustered-sparse channels, " IEEE J. Sel. Topics Signal Process. 5, 1462-1474 (Dec. 2011).
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , pp. 1462-1474
    • Schniter, P.1
  • 22
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. F., "The computational complexity of probabilistic inference using Bayesian belief networks, " Artificial Intelligence 42, 393-405 (1990).
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 23
    • 77953689056 scopus 로고    scopus 로고
    • Turbo reconstruction of structured sparse signals
    • (Mar)
    • Schniter, P., "Turbo reconstruction of structured sparse signals, " in [Proc. Conf. Inform. Science & Syst. ], 1-6 (Mar. 2010).
    • (2010) Proc. Conf. Inform. Science & Syst , pp. 1-6
    • Schniter, P.1
  • 24
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • Dempster, A., Laird, N. M., and Rubin, D. B., "Maximum-likelihood from incomplete data via the EM algorithm, " J. Roy. Statist. Soc. 39, 1-17 (1977).
    • (1977) J. Roy. Statist. Soc. , vol.39 , pp. 1-17
    • Dempster, A.1    Laird, N.M.2    Rubin, D.B.3
  • 25
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Jordan, M. I. ed. 355-368, MIT Press
    • Neal, R. and Hinton, G., "A view of the EM algorithm that justifies incremental, sparse, and other variants, " in [Learning in Graphical Models], Jordan, M. I., ed., 355-368, MIT Press (1999).
    • (1999) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.