메뉴 건너뛰기




Volumn 66, Issue 8 SUPPL.8, 2013, Pages

Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research

Author keywords

Causal inference; Confounding; Disease risk score; Matching methods; Nonexperimental study; Propensity score diagnostics

Indexed keywords

ARTICLE; COMPARATIVE EFFECTIVENESS; PERFORMANCE; PRIORITY JOURNAL; PROGNOSIS; PROGNOSTIC SCORE; PROPENSITY SCORE; SAMPLE SIZE; SCORING SYSTEM; SIMULATION;

EID: 84880240208     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2013.01.013     Document Type: Article
Times cited : (489)

References (25)
  • 1
    • 53349127165 scopus 로고    scopus 로고
    • Systematic differences in treatment effect estimates between propensity score methods and logistic regression
    • E.P. Martens, W.R. Pestman, A. de Boer, S.V. Belitser, and O.H. Klungel Systematic differences in treatment effect estimates between propensity score methods and logistic regression Int J Epidemiol 37 2008 1142 1147
    • (2008) Int J Epidemiol , vol.37 , pp. 1142-1147
    • Martens, E.P.1    Pestman, W.R.2    De Boer, A.3    Belitser, S.V.4    Klungel, O.H.5
  • 2
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • E.A. Stuart Matching methods for causal inference: a review and a look forward Stat Sci 25 1 2010 1 21
    • (2010) Stat Sci , vol.25 , Issue.1 , pp. 1-21
    • Stuart, E.A.1
  • 3
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • B.K. Lee, J. Lessler, and E.A. Stuart Improving propensity score weighting using machine learning Stat Med 29 2009 337 346
    • (2009) Stat Med , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 4
    • 58849157241 scopus 로고    scopus 로고
    • Use of disease risk scores in pharmacoepidemiologic studies
    • P.G. Arbogast, and W.A. Ray Use of disease risk scores in pharmacoepidemiologic studies Stat Methods Med Res 18 1 2009 67 80
    • (2009) Stat Methods Med Res , vol.18 , Issue.1 , pp. 67-80
    • Arbogast, P.G.1    Ray, W.A.2
  • 5
    • 44849091245 scopus 로고    scopus 로고
    • The prognostic analogue of the propensity score
    • DOI 10.1093/biomet/asn004
    • B.B. Hansen The prognostic analogue of the propensity score Biometrika 95 2 2008 481 488 (Pubitemid 351797222)
    • (2008) Biometrika , vol.95 , Issue.2 , pp. 481-488
    • Hansen, B.B.1
  • 6
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • DOI 10.1002/sim.2580
    • P.C. Austin, P. Grootendorst, and G.M. Anderson A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study Stat Med 26 2007 734 753 (Pubitemid 46206593)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 7
    • 79959558713 scopus 로고    scopus 로고
    • The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration
    • A.R. Patrick, S. Schneeweiss, M.A. Brookhart, R.J. Glynn, K.J. Rothman, and J. Avorn The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration Pharmacoepidemiol Drug Saf 20 6 2011 551 559
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.6 , pp. 551-559
    • Patrick, A.R.1    Schneeweiss, S.2    Brookhart, M.A.3    Glynn, R.J.4    Rothman, K.J.5    Avorn, J.6
  • 8
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • S. Schneeweiss, J.A. Rassen, R.J. Glynn, J. Avorn, H. Mogun, and M.A. Brookhart High-dimensional propensity score adjustment in studies of treatment effects using health care claims data Epidemiology 20 2009 512 522
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 9
    • 84860599298 scopus 로고    scopus 로고
    • Role of disease risk scores in comparative effectiveness research with emerging therapies
    • R.J. Glynn, J.J. Gagne, and S. Schneeweiss Role of disease risk scores in comparative effectiveness research with emerging therapies Pharmacoepidemiol Drug Saf 21 Suppl 2 2012 138 147
    • (2012) Pharmacoepidemiol Drug Saf , vol.21 , Issue.SUPPL 2 , pp. 138-147
    • Glynn, R.J.1    Gagne, J.J.2    Schneeweiss, S.3
  • 10
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • D.B. Rubin, and N. Thomas Combining propensity score matching with additional adjustments for prognostic covariates J Am Stat Assoc 95 2000 573 585
    • (2000) J Am Stat Assoc , vol.95 , pp. 573-585
    • Rubin, D.B.1    Thomas, N.2
  • 11
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • P.R. Rosenbaum, and D.B. Rubin The central role of the propensity score in observational studies for causal effects Biometrika 70 1983 41 55
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 12
    • 80555131090 scopus 로고    scopus 로고
    • Balance measures for propensity score methods: A clinical example on beta-agonist use and the risk of myocardial infarction
    • R.H. Groenwold, F. de Vries, A. de Boer, W.R. Pestman, F.H. Rutten, and A.W. Hoes Balance measures for propensity score methods: a clinical example on beta-agonist use and the risk of myocardial infarction Pharmacoepidemiol Drug Saf 20 11 2011 1130 1137
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.11 , pp. 1130-1137
    • Groenwold, R.H.1    De Vries, F.2    De Boer, A.3    Pestman, W.R.4    Rutten, F.H.5    Hoes, A.W.6
  • 15
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • D.B. Rubin Using propensity scores to help design observational studies: application to the tobacco litigation Health Serv Outcomes Res Meth 2 2001 169 188
    • (2001) Health Serv Outcomes Res Meth , vol.2 , pp. 169-188
    • Rubin, D.B.1
  • 16
    • 40549104115 scopus 로고    scopus 로고
    • Misunderstandings between experimentalists and observationalists about causal inference
    • K. Imai, G. King, and E.A. Stuart Misunderstandings between experimentalists and observationalists about causal inference J R Stat Soc Ser A 171 2008 481 502
    • (2008) J R Stat Soc ser A , vol.171 , pp. 481-502
    • Imai, K.1    King, G.2    Stuart, E.A.3
  • 17
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
    • P.C. Austin Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples Stat Med 28 2009 3083 3107
    • (2009) Stat Med , vol.28 , pp. 3083-3107
    • Austin, P.C.1
  • 18
    • 79958747321 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference
    • D.E. Ho, K. Imai, G. King, and E.A. Stuart MatchIt: nonparametric preprocessing for parametric causal inference J Stat Softw 42 8 2011 1 28
    • (2011) J Stat Softw , vol.42 , Issue.8 , pp. 1-28
    • Ho, D.E.1    Imai, K.2    King, G.3    Stuart, E.A.4
  • 21
    • 4544228988 scopus 로고    scopus 로고
    • Analysis of complex survey samples
    • T. Lumley Analysis of complex survey samples J Stat Softw 9 1 2004 1 19 R Package version 2.2 (Pubitemid 39217809)
    • (2004) Journal of Statistical Software , vol.9 , pp. 1-19
    • Lumley, T.1
  • 22
    • 33744495314 scopus 로고    scopus 로고
    • Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics
    • DOI 10.1002/pds.1200
    • S. Schneeweiss Sensitivity analysis and external adjustment for unobserved confounders in epidemiologic database studies of therapies Pharmacoepidemiol Drug Saf 15 5 2006 291 303 (Pubitemid 43797117)
    • (2006) Pharmacoepidemiology and Drug Safety , vol.15 , Issue.5 , pp. 291-303
    • Schneeweiss, S.1
  • 23
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • J.L. Schafer, and J. Kang Average causal effects from nonrandomized studies: a practical guide and simulated example Psychol Meth 13 2008 279 313
    • (2008) Psychol Meth , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 24
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • DOI 10.1002/pds.968
    • D.B. Rubin On principles for modeling propensity scores in medical research Pharmacoepidemiol Drug Saf 13 2004 855 857 (Pubitemid 40003820)
    • (2004) Pharmacoepidemiology and Drug Safety , vol.13 , Issue.12 , pp. 855-857
    • Rubin, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.