메뉴 건너뛰기




Volumn 37, Issue 5, 2008, Pages 1142-1147

Systematic differences in treatment effect estimates between propensity score methods and logistic regression

Author keywords

Adjusted treatment effect; Conditional treatment effect; Confounding; Logistic regression; Marginal treatment effect; Observational studies; Propensity scores

Indexed keywords

ESTIMATION METHOD; LOGISTICS; OBSERVATIONAL METHOD; REGRESSION ANALYSIS;

EID: 53349127165     PISSN: 03005771     EISSN: 14643685     Source Type: Journal    
DOI: 10.1093/ije/dyn079     Document Type: Article
Times cited : (105)

References (31)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino RB Jr. Tutorial in biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998;17:2265-81.
    • (1998) Stat Med , vol.17 , pp. 2265-2281
    • D'Agostino Jr., R.B.1
  • 3
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
    • Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review. J Clin Epidemiol 2005;58 550-59.
    • (2005) J Clin Epidemiol , vol.58 , pp. 550-559
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3    Austin, P.C.4
  • 4
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol 2006;59:437-47.
    • (2006) J Clin Epidemiol , vol.59 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothman, K.J.5    Schneeweiss, S.6
  • 5
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Available at
    • Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Hiometrika 1984;71:431-44. Available at: http://www.jstor.org/stable/view/2336553.
    • (1984) Hiometrika , vol.71 , pp. 431-444
    • Gail, M.H.1    Wieand, S.2    Piantadosi, S.3
  • 6
    • 0023921410 scopus 로고
    • The effect of pooling across strata in perfectly balanced studies
    • Gail MH. The effect of pooling across strata in perfectly balanced studies. Biometrics 1988;44:151-63.
    • (1988) Biometrics , vol.44 , pp. 151-163
    • Gail, M.H.1
  • 7
    • 0000029731 scopus 로고
    • Some surprising results about covariate adjustment in logistic regression models
    • Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression models. Int Stat Rev 1991;58 227-40.
    • (1991) Int Stat Rev , vol.58 , pp. 227-240
    • Robinson, L.D.1    Jewell, N.P.2
  • 8
    • 0001215884 scopus 로고
    • Collapsibility of logistic regression coefficients
    • Guo J, Geng Z. Collapsibility of logistic regression coefficients. J R Statist Soc B 1995;57:263-67.
    • (1995) J R Statist Soc B , vol.57 , pp. 263-267
    • Guo, J.1    Geng, Z.2
  • 9
    • 0026011101 scopus 로고
    • A consequence of omitted covariates when estimating odds ratios
    • Hauck WW, Neuhaus JM, Kalbfleisch JD et al. A consequence of omitted covariates when estimating odds ratios. J Clin Epidemiol 1991;44:77-81.
    • (1991) J Clin Epidemiol , vol.44 , pp. 77-81
    • Hauck, W.W.1    Neuhaus, J.M.2    Kalbfleisch, J.D.3
  • 10
    • 0031777876 scopus 로고    scopus 로고
    • Should we adjust for covariates in nonlinear regression analyses of randomized trials?
    • Hauck WW, Anderson S, Marcus SM. Should we adjust for covariates in nonlinear regression analyses of randomized trials? Control Clin Trials 1998;19:249-56.
    • (1998) Control Clin Trials , vol.19 , pp. 249-256
    • Hauck, W.W.1    Anderson, S.2    Marcus, S.M.3
  • 11
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins MR, Pearl J. Confounding and collapsibility in causal inference. Stat Science 1999;14:29-46.
    • (1999) Stat Science , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, M.R.2    Pearl, J.3
  • 12
    • 0023203943 scopus 로고
    • Interpretation and choice of effect measures in epidemiologic analyses
    • Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol 1987;125:761-68.
    • (1987) Am J Epidemiol , vol.125 , pp. 761-768
    • Greenland, S.1
  • 13
    • 0023576205 scopus 로고    scopus 로고
    • Wickramaratne PJ, Holford ThR. Confounding in epidemiologic studies: The adequacy of the control group as a measure of confounding. Biometrics 1987;43:751-65, [Erratum, Biometrics 1989; 45:1039].
    • Wickramaratne PJ, Holford ThR. Confounding in epidemiologic studies: The adequacy of the control group as a measure of confounding. Biometrics 1987;43:751-65, [Erratum, Biometrics 1989; 45:1039].
  • 14
    • 0000414747 scopus 로고
    • Effects of omitting covariates in Coxs model for survival data
    • Bretagnolle J, Huber-Carol C. Effects of omitting covariates in Coxs model for survival data. Scand J Stat 1988;15:125-38.
    • (1988) Scand J Stat , vol.15 , pp. 125-138
    • Bretagnolle, J.1    Huber-Carol, C.2
  • 15
    • 0022994244 scopus 로고
    • Omitting covariates from the proportional hazards model
    • Morgan TM, Lagakos SW, Schoenfeld DA. Omitting covariates from the proportional hazards model. Biometrics 1986;42:993-95.
    • (1986) Biometrics , vol.42 , pp. 993-995
    • Morgan, T.M.1    Lagakos, S.W.2    Schoenfeld, D.A.3
  • 16
    • 0001015983 scopus 로고
    • Correcting for non-compliance in randomized trials using rank preserving structural failure time models
    • Robins JM, Tsiatis AA. Correcting for non-compliance in randomized trials using rank preserving structural failure time models. Commun Statist-Theory Meth 1991;20:2609-31.
    • (1991) Commun Statist-Theory Meth , vol.20 , pp. 2609-2631
    • Robins, J.M.1    Tsiatis, A.A.2
  • 17
    • 0011021255 scopus 로고    scopus 로고
    • Propensity score
    • Armitage P, Colton T eds, Chichester, United Kingdom: Wiley
    • Rosenbaum PR. Propensity score. In: Armitage P, Colton T (eds). Encyclopedia of Biostatistics. Chichester, United Kingdom: Wiley, 1998.
    • (1998) Encyclopedia of Biostatistics
    • Rosenbaum, P.R.1
  • 18
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study
    • Austin PC, Grootendorst P, Normand ST, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study. Stat Med 2007;26 754-68.
    • (2007) Stat Med , vol.26 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.T.3    Anderson, G.M.4
  • 19
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study. Stat Med 2007; 26:734-53.
    • (2007) Stat Med , vol.26 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 20
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 2003;158 280-87.
    • (2003) Am J Epidemiol , vol.158 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 21
    • 33847278858 scopus 로고    scopus 로고
    • The effect of omitted covariates on confidence interval and study power in binary outcome analysis: A simulation study
    • Negassa A, Hanley JA. The effect of omitted covariates on confidence interval and study power in binary outcome analysis: A simulation study. Cont Clin trials 2007;28: 242-48.
    • (2007) Cont Clin trials , vol.28 , pp. 242-248
    • Negassa, A.1    Hanley, J.A.2
  • 22
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2007;26:3078-94.
    • (2007) Stat Med , vol.26 , pp. 3078-3094
    • Austin, P.C.1
  • 23
    • 34347376707 scopus 로고    scopus 로고
    • Letter to the editor: 'Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study, by Austin PC, Grootendorst P, Normand ST, Anderson GM'
    • Martens EP, Pestman WR, Klungel OH. Letter to the editor: 'Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study, by Austin PC, Grootendorst P, Normand ST, Anderson GM'. Stat Med 2007;26 3208-10.
    • (2007) Stat Med , vol.26 , pp. 3208-3210
    • Martens, E.P.1    Pestman, W.R.2    Klungel, O.H.3
  • 26
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research (Editorial)
    • Rubin DB. On principles for modeling propensity scores in medical research (Editorial). Pharmacoepidemiol Drug Saf 2004;13 855-57.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , pp. 855-857
    • Rubin, D.B.1
  • 27
    • 11844302840 scopus 로고    scopus 로고
    • Subgroup analysis in randomised controlled trials: Importance, indications, and interpretation
    • Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet 2005;365 176-86.
    • (2005) Lancet , vol.365 , pp. 176-186
    • Rothwell, P.M.1
  • 28
    • 0034702233 scopus 로고    scopus 로고
    • A comparison of observational studies and randomized, controlled trials
    • Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. N Engl J Med 2000;342:1878-86.
    • (2000) N Engl J Med , vol.342 , pp. 1878-1886
    • Benson, K.1    Hartz, A.J.2
  • 29
    • 0035880296 scopus 로고    scopus 로고
    • Comparison of evidence of treatment effects in randomized and nonrandomized studies
    • Ioannidis JP, Haidich AB, Pappa M et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA 2001;286:821-30.
    • (2001) JAMA , vol.286 , pp. 821-830
    • Ioannidis, J.P.1    Haidich, A.B.2    Pappa, M.3
  • 30
    • 0032585188 scopus 로고    scopus 로고
    • The unpredictability paradox: Review of empirical comparisons of randomised and nonrandomised clinical trials
    • Kunz R, Oxman AD. The unpredictability paradox: Review of empirical comparisons of randomised and nonrandomised clinical trials. BMJ 1998;317:1185-90.
    • (1998) BMJ , vol.317 , pp. 1185-1190
    • Kunz, R.1    Oxman, A.D.2
  • 31
    • 0034702175 scopus 로고    scopus 로고
    • Randomized, controlled trials, observational studies, and the hierarchy of research designs
    • Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 2000;342:1887-92.
    • (2000) N Engl J Med , vol.342 , pp. 1887-1892
    • Concato, J.1    Shah, N.2    Horwitz, R.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.