-
1
-
-
84866002474
-
The stem cell niche: Tissue physiology at a single cell level
-
Hoggatt J, Scadden DT. The stem cell niche: tissue physiology at a single cell level. J Clin Invest 2012; 122:3029-3034.
-
(2012)
J Clin Invest
, vol.122
, pp. 3029-3034
-
-
Hoggatt, J.1
Scadden, D.T.2
-
2
-
-
39149144034
-
Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life
-
Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132:598-611.
-
(2008)
Cell
, vol.132
, pp. 598-611
-
-
Morrison, S.J.1
Spradling, A.C.2
-
3
-
-
35848948403
-
Imaging hematopoietic precursor division in real time
-
Wu M, Kwon HY, Rattis F, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007; 1:541-554.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 541-554
-
-
Wu, M.1
Kwon, H.Y.2
Rattis, F.3
-
4
-
-
77953632556
-
Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells
-
Mantel C, Messina-Graham S, Broxmeyer HE. Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 2010; 9:2008-2017.
-
(2010)
Cell Cycle
, pp. 9
-
-
Mantel, C.1
Messina-Graham, S.2
Broxmeyer, H.E.3
-
5
-
-
22544446192
-
Characterization of mitochondrial and extramitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity
-
Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extramitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280:26467-26476.
-
(2005)
J Biol Chem
, vol.280
, pp. 26467-26476
-
-
Piccoli, C.1
Ria, R.2
Scrima, R.3
-
6
-
-
84868632060
-
A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
-
This study identifies a previously unknown PML-PPAR-delta pathway for fatty acid oxidation in the regulation of asymmetric division and thus maintenance of hematopoietic stem cells
-
Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012; 18:1350-1358
-
(2012)
Nat Med
, vol.18
, pp. 1350-1358
-
-
Ito, K.1
Carracedo, A.2
Weiss, D.3
-
7
-
-
75749146169
-
Coexistence of quiescent and active adult stem cells in mammals
-
Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 2010; 327:542-545.
-
(2010)
Science
, vol.327
, pp. 542-545
-
-
Li, L.1
Clevers, H.2
-
8
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9:298-310.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 298-310
-
-
Suda, T.1
Takubo, K.2
Semenza, G.L.3
-
9
-
-
84868347607
-
Metabolic plasticity in stem cell homeostasis and differentiation
-
Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012; 11:596-606.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 596-606
-
-
Folmes, C.D.1
Dzeja, P.P.2
Nelson, T.J.3
Terzic, A.4
-
10
-
-
79955698235
-
Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
-
Norddahl GL, Pronk CJ, Wahlestedt M, et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011; 8:499-510.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 499-510
-
-
Norddahl, G.L.1
Pronk, C.J.2
Wahlestedt, M.3
-
11
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-390.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 380-390
-
-
Simsek, T.1
Kocabas, F.2
Zheng, J.3
-
12
-
-
77955273858
-
Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells
-
Inoue S, Noda S, Kashima K, et al. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett 2010; 584:3402-3409.
-
(2010)
FEBS Lett
, vol.584
, pp. 3402-3409
-
-
Inoue, S.1
Noda, S.2
Kashima, K.3
-
13
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194:7-15.
-
(2011)
J Cell Biol
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
14
-
-
7244250309
-
Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
-
Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431:997-1002.
-
(2004)
Nature
, vol.431
, pp. 997-1002
-
-
Ito, K.1
Hirao, A.2
Arai, F.3
-
15
-
-
35548936968
-
A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
-
Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110:3056-3063.
-
(2007)
Blood
, vol.110
, pp. 3056-3063
-
-
Jang, Y.Y.1
Sharkis, S.J.2
-
16
-
-
33846419112
-
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
-
Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128:325-339.
-
(2007)
Cell
, vol.128
, pp. 325-339
-
-
Tothova, Z.1
Kollipara, R.2
Huntly, B.J.3
-
17
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009; 461:537-541.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
18
-
-
34248359065
-
Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
-
Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104:5431-5436.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 5431-5436
-
-
Parmar, K.1
Mauch, P.2
Vergilio, J.A.3
-
19
-
-
67349156082
-
Bmi1 regulates mitochondrial function and the DNA damage response pathway
-
Liu J, Cao L, Chen J, et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459:387-392.
-
(2009)
Nature
, vol.459
, pp. 387-392
-
-
Liu, J.1
Cao, L.2
Chen, J.3
-
20
-
-
84868351585
-
Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
-
Zhang J, Nuebel E, Daley GQ, et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012; 11:589-595.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 589-595
-
-
Zhang, J.1
Nuebel, E.2
Daley, G.Q.3
-
21
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8Ã T cell memory development
-
van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8Ã T cell memory development. Immunity 2012; 36:68-78.
-
(2012)
Immunity
, vol.36
, pp. 68-78
-
-
Van Der Windt, G.J.1
Everts, B.2
Chang, C.H.3
-
22
-
-
34548014737
-
Revving the engine: Signal transduction fuels T cell activation
-
Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007; 27:173-178.
-
(2007)
Immunity
, vol.27
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
23
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65:177-185.
-
(2005)
Cancer Res
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
Lleonart, M.E.2
Gil, J.3
-
24
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
26
-
-
84872011926
-
Regulation of glycolysis by pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
This study establishes that resting HSCs use anaerobic glycolysis as a source of energy and that this metabolic program is required to maintain a functional quiescent state
-
Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12:49-61
-
(2013)
Cell Stem Cell
, vol.12
, pp. 49-61
-
-
Takubo, K.1
Nagamatsu, G.2
Kobayashi, C.I.3
-
27
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
This study establishes the critical role of mitochondrial respiration in HSC differentiation and sugests that quiescent HSCs must switch to the more effeiceint ATP-producing program to enter a cell division associated with differentiation
-
Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12:62-74
-
(2013)
Cell Stem Cell
, vol.12
, pp. 62-74
-
-
Yu, W.M.1
Liu, X.2
Shen, J.3
-
28
-
-
70149093912
-
Recurring mutations found by sequencing an acute myeloid leukemia genome
-
Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361:1058-1066.
-
(2009)
N Engl J Med
, vol.361
, pp. 1058-1066
-
-
Mardis, E.R.1
Ding, L.2
Dooling, D.J.3
-
29
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807-1812.
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
Jones, S.2
Zhang, X.3
-
30
-
-
84865520089
-
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
-
This is the first study characterizing conditional IDH(R132H)-knock-in mice
-
Sasaki M, Knobbe CB, Munger JC, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488:656-659. This is the first study characterizing conditional IDH(R132H)-knock-in mice
-
(2012)
Nature
, vol.488
, pp. 656-659
-
-
Sasaki, M.1
Knobbe, C.B.2
Munger, J.C.3
-
31
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18:553-567.
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
Abdel-Wahab, O.2
Lu, C.3
-
32
-
-
84866038635
-
IDH1 mutations disrupt blood, brain, and barriers
-
Shih AH, Levine RL. IDH1 mutations disrupt blood, brain, and barriers. Cancer Cell 2012; 22:285-287.
-
(2012)
Cancer Cell
, vol.22
, pp. 285-287
-
-
Shih, A.H.1
Levine, R.L.2
-
33
-
-
84865285455
-
Metabolic switching and fuel choice during T-cell differentiation and memory development
-
van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 2012; 249:27-42.
-
(2012)
Immunol Rev
, vol.249
, pp. 27-42
-
-
Van Der Windt, G.J.1
Pearce, E.L.2
-
34
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30:4860-4873.
-
(2011)
EMBO J
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
Khvorostov, I.2
Hong, J.S.3
-
35
-
-
84855584488
-
Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism
-
Diano S, Horvath TL. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 2012; 18:52-58.
-
(2012)
Trends Mol Med
, vol.18
, pp. 52-58
-
-
Diano, S.1
Horvath, T.L.2
-
36
-
-
65549123260
-
Mitochondrial uncoupling and the Warburg effect: Molecular basis for the reprogramming of cancer cell metabolism
-
Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 2009; 69:2163-2166.
-
(2009)
Cancer Res
, vol.69
, pp. 2163-2166
-
-
Samudio, I.1
Fiegl, M.2
Andreeff, M.3
-
37
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7:391-402.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 391-402
-
-
Takubo, K.1
Goda, N.2
Yamada, W.3
-
38
-
-
84871001227
-
Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
-
Kocabas F, Zheng J, Thet S, et al.Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120:4963-4972.
-
(2012)
Blood
, vol.120
, pp. 4963-4972
-
-
Kocabas, F.1
Zheng, J.2
Thet, S.3
-
39
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205:2397-2408.
-
(2008)
J Exp Med
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
Liu, Y.2
Liu, R.3
-
40
-
-
84866082606
-
MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
-
This study emphasizes key roles of mTOR1-mediated metabolism in hematopoiesis and leukemogenesis, which may serve as the basis of important clinical strategies and/or hypotheses
-
Kalaitzidis D, Sykes SM, Wang Z, et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012; 11:429-439
-
(2012)
Cell Stem Cell
, vol.11
, pp. 429-439
-
-
Kalaitzidis, D.1
Sykes, S.M.2
Wang, Z.3
-
41
-
-
84866064701
-
Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
-
Magee JA, Ikenoue T, Nakada D, et al. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11:415-428.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 415-428
-
-
Magee, J.A.1
Ikenoue, T.2
Nakada, D.3
-
42
-
-
78049496814
-
MTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion
-
Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7:593-605.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 593-605
-
-
Lee, J.Y.1
Nakada, D.2
Yilmaz, O.H.3
-
43
-
-
77953283847
-
AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
-
Juntilla MM, Patil VD, Calamito M, et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010; 115:4030-4038.
-
(2010)
Blood
, vol.115
, pp. 4030-4038
-
-
Juntilla, M.M.1
Patil, V.D.2
Calamito, M.3
-
44
-
-
77949900650
-
Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
-
Kharas MG, Okabe R, Ganis JJ, et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010; 115:1406-1415.
-
(2010)
Blood
, vol.115
, pp. 1406-1415
-
-
Kharas, M.G.1
Okabe, R.2
Ganis, J.J.3
-
45
-
-
80053035284
-
AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-1908.
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
46
-
-
78649851511
-
The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
-
Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468:659-663.
-
(2010)
Nature
, vol.468
, pp. 659-663
-
-
Gurumurthy, S.1
Xie, S.Z.2
Alagesan, B.3
-
47
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468:701-704.
-
(2010)
Nature
, vol.468
, pp. 701-704
-
-
Gan, B.1
Hu, J.2
Jiang, S.3
-
48
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468:653-658.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
Saunders, T.L.2
Morrison, S.J.3
-
49
-
-
63749131243
-
Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2
-
Reinhardt HC, YaffeMB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009; 21:245-255.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 245-255
-
-
Reinhardt, H.C.1
Yaffe, M.B.2
-
50
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18:283-293.
-
(2005)
Mol Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
|