메뉴 건너뛰기




Volumn 20, Issue 4, 2013, Pages 289-294

Metabolic plasticity and hematopoietic stem cell biology

Author keywords

Bioenergetics; Hematopoietic stem cell; Metabolism; Mitochondria; Self renewal and differentiation

Indexed keywords

BMI1 PROTEIN; FRUCTOSE 1,6 BISPHOSPHATE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; ISOCITRATE DEHYDROGENASE 1; ISOCITRATE DEHYDROGENASE 2; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN KINASE LKB1; PYRUVATE KINASE;

EID: 84880208773     PISSN: 10656251     EISSN: 15317048     Source Type: Journal    
DOI: 10.1097/MOH.0b013e328360ab4d     Document Type: Review
Times cited : (29)

References (50)
  • 1
    • 84866002474 scopus 로고    scopus 로고
    • The stem cell niche: Tissue physiology at a single cell level
    • Hoggatt J, Scadden DT. The stem cell niche: tissue physiology at a single cell level. J Clin Invest 2012; 122:3029-3034.
    • (2012) J Clin Invest , vol.122 , pp. 3029-3034
    • Hoggatt, J.1    Scadden, D.T.2
  • 2
    • 39149144034 scopus 로고    scopus 로고
    • Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life
    • Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132:598-611.
    • (2008) Cell , vol.132 , pp. 598-611
    • Morrison, S.J.1    Spradling, A.C.2
  • 3
    • 35848948403 scopus 로고    scopus 로고
    • Imaging hematopoietic precursor division in real time
    • Wu M, Kwon HY, Rattis F, et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007; 1:541-554.
    • (2007) Cell Stem Cell , vol.1 , pp. 541-554
    • Wu, M.1    Kwon, H.Y.2    Rattis, F.3
  • 4
    • 77953632556 scopus 로고    scopus 로고
    • Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells
    • Mantel C, Messina-Graham S, Broxmeyer HE. Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 2010; 9:2008-2017.
    • (2010) Cell Cycle , pp. 9
    • Mantel, C.1    Messina-Graham, S.2    Broxmeyer, H.E.3
  • 5
    • 22544446192 scopus 로고    scopus 로고
    • Characterization of mitochondrial and extramitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity
    • Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extramitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280:26467-26476.
    • (2005) J Biol Chem , vol.280 , pp. 26467-26476
    • Piccoli, C.1    Ria, R.2    Scrima, R.3
  • 6
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • This study identifies a previously unknown PML-PPAR-delta pathway for fatty acid oxidation in the regulation of asymmetric division and thus maintenance of hematopoietic stem cells
    • Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012; 18:1350-1358
    • (2012) Nat Med , vol.18 , pp. 1350-1358
    • Ito, K.1    Carracedo, A.2    Weiss, D.3
  • 7
    • 75749146169 scopus 로고    scopus 로고
    • Coexistence of quiescent and active adult stem cells in mammals
    • Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 2010; 327:542-545.
    • (2010) Science , vol.327 , pp. 542-545
    • Li, L.1    Clevers, H.2
  • 8
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9:298-310.
    • (2011) Cell Stem Cell , vol.9 , pp. 298-310
    • Suda, T.1    Takubo, K.2    Semenza, G.L.3
  • 9
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012; 11:596-606.
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1    Dzeja, P.P.2    Nelson, T.J.3    Terzic, A.4
  • 10
    • 79955698235 scopus 로고    scopus 로고
    • Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
    • Norddahl GL, Pronk CJ, Wahlestedt M, et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011; 8:499-510.
    • (2011) Cell Stem Cell , vol.8 , pp. 499-510
    • Norddahl, G.L.1    Pronk, C.J.2    Wahlestedt, M.3
  • 11
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-390.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1    Kocabas, F.2    Zheng, J.3
  • 12
    • 77955273858 scopus 로고    scopus 로고
    • Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells
    • Inoue S, Noda S, Kashima K, et al. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett 2010; 584:3402-3409.
    • (2010) FEBS Lett , vol.584 , pp. 3402-3409
    • Inoue, S.1    Noda, S.2    Kashima, K.3
  • 13
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194:7-15.
    • (2011) J Cell Biol , vol.194 , pp. 7-15
    • Finkel, T.1
  • 14
    • 7244250309 scopus 로고    scopus 로고
    • Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
    • Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431:997-1002.
    • (2004) Nature , vol.431 , pp. 997-1002
    • Ito, K.1    Hirao, A.2    Arai, F.3
  • 15
    • 35548936968 scopus 로고    scopus 로고
    • A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
    • Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110:3056-3063.
    • (2007) Blood , vol.110 , pp. 3056-3063
    • Jang, Y.Y.1    Sharkis, S.J.2
  • 16
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128:325-339.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1    Kollipara, R.2    Huntly, B.J.3
  • 17
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009; 461:537-541.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 18
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104:5431-5436.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 5431-5436
    • Parmar, K.1    Mauch, P.2    Vergilio, J.A.3
  • 19
    • 67349156082 scopus 로고    scopus 로고
    • Bmi1 regulates mitochondrial function and the DNA damage response pathway
    • Liu J, Cao L, Chen J, et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459:387-392.
    • (2009) Nature , vol.459 , pp. 387-392
    • Liu, J.1    Cao, L.2    Chen, J.3
  • 20
    • 84868351585 scopus 로고    scopus 로고
    • Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
    • Zhang J, Nuebel E, Daley GQ, et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012; 11:589-595.
    • (2012) Cell Stem Cell , vol.11 , pp. 589-595
    • Zhang, J.1    Nuebel, E.2    Daley, G.Q.3
  • 21
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8Ã T cell memory development
    • van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8Ã T cell memory development. Immunity 2012; 36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • Van Der Windt, G.J.1    Everts, B.2    Chang, C.H.3
  • 22
    • 34548014737 scopus 로고    scopus 로고
    • Revving the engine: Signal transduction fuels T cell activation
    • Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007; 27:173-178.
    • (2007) Immunity , vol.27 , pp. 173-178
    • Jones, R.G.1    Thompson, C.B.2
  • 23
    • 11244347171 scopus 로고    scopus 로고
    • Glycolytic enzymes can modulate cellular life span
    • Kondoh H, Lleonart ME, Gil J, et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65:177-185.
    • (2005) Cancer Res , vol.65 , pp. 177-185
    • Kondoh, H.1    Lleonart, M.E.2    Gil, J.3
  • 24
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 26
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • This study establishes that resting HSCs use anaerobic glycolysis as a source of energy and that this metabolic program is required to maintain a functional quiescent state
    • Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12:49-61
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1    Nagamatsu, G.2    Kobayashi, C.I.3
  • 27
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • This study establishes the critical role of mitochondrial respiration in HSC differentiation and sugests that quiescent HSCs must switch to the more effeiceint ATP-producing program to enter a cell division associated with differentiation
    • Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12:62-74
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.M.1    Liu, X.2    Shen, J.3
  • 28
    • 70149093912 scopus 로고    scopus 로고
    • Recurring mutations found by sequencing an acute myeloid leukemia genome
    • Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361:1058-1066.
    • (2009) N Engl J Med , vol.361 , pp. 1058-1066
    • Mardis, E.R.1    Ding, L.2    Dooling, D.J.3
  • 29
    • 52949127312 scopus 로고    scopus 로고
    • An integrated genomic analysis of human glioblastoma multiforme
    • Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807-1812.
    • (2008) Science , vol.321 , pp. 1807-1812
    • Parsons, D.W.1    Jones, S.2    Zhang, X.3
  • 30
    • 84865520089 scopus 로고    scopus 로고
    • IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
    • This is the first study characterizing conditional IDH(R132H)-knock-in mice
    • Sasaki M, Knobbe CB, Munger JC, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488:656-659. This is the first study characterizing conditional IDH(R132H)-knock-in mice
    • (2012) Nature , vol.488 , pp. 656-659
    • Sasaki, M.1    Knobbe, C.B.2    Munger, J.C.3
  • 31
    • 78650019179 scopus 로고    scopus 로고
    • Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
    • Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18:553-567.
    • (2010) Cancer Cell , vol.18 , pp. 553-567
    • Figueroa, M.E.1    Abdel-Wahab, O.2    Lu, C.3
  • 32
    • 84866038635 scopus 로고    scopus 로고
    • IDH1 mutations disrupt blood, brain, and barriers
    • Shih AH, Levine RL. IDH1 mutations disrupt blood, brain, and barriers. Cancer Cell 2012; 22:285-287.
    • (2012) Cancer Cell , vol.22 , pp. 285-287
    • Shih, A.H.1    Levine, R.L.2
  • 33
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T-cell differentiation and memory development
    • van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 2012; 249:27-42.
    • (2012) Immunol Rev , vol.249 , pp. 27-42
    • Van Der Windt, G.J.1    Pearce, E.L.2
  • 34
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30:4860-4873.
    • (2011) EMBO J , vol.30 , pp. 4860-4873
    • Zhang, J.1    Khvorostov, I.2    Hong, J.S.3
  • 35
    • 84855584488 scopus 로고    scopus 로고
    • Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism
    • Diano S, Horvath TL. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 2012; 18:52-58.
    • (2012) Trends Mol Med , vol.18 , pp. 52-58
    • Diano, S.1    Horvath, T.L.2
  • 36
    • 65549123260 scopus 로고    scopus 로고
    • Mitochondrial uncoupling and the Warburg effect: Molecular basis for the reprogramming of cancer cell metabolism
    • Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 2009; 69:2163-2166.
    • (2009) Cancer Res , vol.69 , pp. 2163-2166
    • Samudio, I.1    Fiegl, M.2    Andreeff, M.3
  • 37
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7:391-402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1    Goda, N.2    Yamada, W.3
  • 38
    • 84871001227 scopus 로고    scopus 로고
    • Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
    • Kocabas F, Zheng J, Thet S, et al.Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120:4963-4972.
    • (2012) Blood , vol.120 , pp. 4963-4972
    • Kocabas, F.1    Zheng, J.2    Thet, S.3
  • 39
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205:2397-2408.
    • (2008) J Exp Med , vol.205 , pp. 2397-2408
    • Chen, C.1    Liu, Y.2    Liu, R.3
  • 40
    • 84866082606 scopus 로고    scopus 로고
    • MTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
    • This study emphasizes key roles of mTOR1-mediated metabolism in hematopoiesis and leukemogenesis, which may serve as the basis of important clinical strategies and/or hypotheses
    • Kalaitzidis D, Sykes SM, Wang Z, et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012; 11:429-439
    • (2012) Cell Stem Cell , vol.11 , pp. 429-439
    • Kalaitzidis, D.1    Sykes, S.M.2    Wang, Z.3
  • 41
    • 84866064701 scopus 로고    scopus 로고
    • Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
    • Magee JA, Ikenoue T, Nakada D, et al. Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11:415-428.
    • (2012) Cell Stem Cell , vol.11 , pp. 415-428
    • Magee, J.A.1    Ikenoue, T.2    Nakada, D.3
  • 42
    • 78049496814 scopus 로고    scopus 로고
    • MTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion
    • Lee JY, Nakada D, Yilmaz OH, et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7:593-605.
    • (2010) Cell Stem Cell , vol.7 , pp. 593-605
    • Lee, J.Y.1    Nakada, D.2    Yilmaz, O.H.3
  • 43
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • Juntilla MM, Patil VD, Calamito M, et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010; 115:4030-4038.
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1    Patil, V.D.2    Calamito, M.3
  • 44
    • 77949900650 scopus 로고    scopus 로고
    • Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
    • Kharas MG, Okabe R, Ganis JJ, et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010; 115:1406-1415.
    • (2010) Blood , vol.115 , pp. 1406-1415
    • Kharas, M.G.1    Okabe, R.2    Ganis, J.J.3
  • 45
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
    • Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25:1895-1908.
    • (2011) Genes Dev , vol.25 , pp. 1895-1908
    • Hardie, D.G.1
  • 46
    • 78649851511 scopus 로고    scopus 로고
    • The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
    • Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468:659-663.
    • (2010) Nature , vol.468 , pp. 659-663
    • Gurumurthy, S.1    Xie, S.Z.2    Alagesan, B.3
  • 47
    • 78649874959 scopus 로고    scopus 로고
    • Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
    • Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468:701-704.
    • (2010) Nature , vol.468 , pp. 701-704
    • Gan, B.1    Hu, J.2    Jiang, S.3
  • 48
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468:653-658.
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1    Saunders, T.L.2    Morrison, S.J.3
  • 49
    • 63749131243 scopus 로고    scopus 로고
    • Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2
    • Reinhardt HC, YaffeMB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009; 21:245-255.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 245-255
    • Reinhardt, H.C.1    Yaffe, M.B.2
  • 50
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18:283-293.
    • (2005) Mol Cell , vol.18 , pp. 283-293
    • Jones, R.G.1    Plas, D.R.2    Kubek, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.