메뉴 건너뛰기




Volumn 22, Issue , 2013, Pages 1-141

A concise introduction to models and methods for automated planning

Author keywords

action selection; autonomous behavior; belief tracking; domain independent problem solving; MDP and POMDP planning; model based control; plan generation and recognition; planning; planning with incomplete information and sensing

Indexed keywords

ACTION SELECTION; AUTONOMOUS BEHAVIORS; MODEL-BASED CONTROL; PLAN GENERATION; PLANNING WITH INCOMPLETE INFORMATION;

EID: 84880083926     PISSN: 19394608     EISSN: 19394616     Source Type: Book Series    
DOI: 10.2200/S00513ED1V01Y201306AIM022     Document Type: Article
Times cited : (144)

References (240)
  • 5
    • 77954951649 scopus 로고    scopus 로고
    • Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs
    • DOI: 10.1007/s10458-009-9103-z 108
    • C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs. Journal of Autonomous Agents and Multi-Agent Systems, 21(3):293-320, 2010. DOI: 10.1007/s10458-009-9103-z 108
    • (2010) Journal of Autonomous Agents and Multi-Agent Systems , vol.21 , Issue.3 , pp. 293-320
    • Amato, C.1    Bernstein, D.S.2    Zilberstein, S.3
  • 7
    • 50549213583 scopus 로고
    • Optimal control of markov decision processes with incomplete state estimation
    • K. Astrom. Optimal control of Markov Decision Processes with incomplete state estimation. Journal of Mathematical Analysis and Applications, 10:174-205, 1965.
    • (1965) Journal of Mathematical Analysis and Applications , vol.10 , pp. 174-205
    • Astrom, K.1
  • 9
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • DOI: 10.1023/A:1013689704352
    • P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2):235-256, 2002. DOI: 10.1023/A:1013689704352
    • (2002) Machine Learning , vol.47 , Issue.2 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 10
    • 0033897011 scopus 로고    scopus 로고
    • Using temporal logics to express search control knowledge for planning
    • DOI: 10.1016/S0004-3702(99)00071-5
    • F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning. Artificial Intelligence, 116:123-191, 2000. DOI: 10.1016/S0004-3702(99)00071-5
    • (2000) Artificial Intelligence , vol.116 , pp. 123-191
    • Bacchus, F.1    Kabanza, F.2
  • 11
    • 0028545292 scopus 로고
    • Downward refinement and the efficiency of hierarchical problem solving
    • DOI: 10.1016/0004-3702(94)90062-0
    • F. Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical problem solving. Artificial Intelligence, 71:43-100, 1994. DOI: 10.1016/0004-3702(94)90062-0
    • (1994) Artificial Intelligence , vol.71 , pp. 43-100
    • Bacchus, F.1    Yang, Q.2
  • 12
    • 0029405902 scopus 로고
    • Complexity results for SAS+ planning
    • DOI: 10.1111/j.1467-8640.1995.tb00052.x
    • C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational Intelligence, 11(4):625-655, 1995. DOI: 10.1111/j.1467-8640.1995.tb00052.x
    • (1995) Computational Intelligence , vol.11 , Issue.4 , pp. 625-655
    • Bäckström, C.1    Nebel, B.2
  • 13
    • 60549115949 scopus 로고    scopus 로고
    • A heuristic search approach to planning with temporally extended preferences
    • DOI: 10.1016/j.artint.2008.11.011
    • J. A. Baier, F. Bacchus, and S. A. McIlraith. A heuristic search approach to planning with temporally extended preferences. Artificial Intelligence, 173(5-6):593-618, 2009. DOI: 10.1016/j.artint.2008.11.011
    • (2009) Artificial Intelligence , vol.173 , Issue.5-6 , pp. 593-618
    • Baier, J.A.1    Bacchus, F.2    McIlraith., S.A.3
  • 14
    • 70350569456 scopus 로고    scopus 로고
    • Action understanding as inverse planning
    • DOI: 10.1016/j.cognition.2009.07.005
    • C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse planning. Cognition, 113(3):329-349, 2009. DOI: 10.1016/j.cognition. 2009.07.005
    • (2009) Cognition , vol.113 , Issue.3 , pp. 329-349
    • Baker, C.L.1    Saxe, R.2    Tenenbaum, J.B.3
  • 16
    • 0031429913 scopus 로고    scopus 로고
    • Deictic codes for the embodiment of cognition
    • DOI: 10.1017/S0140525X97001611 10
    • D. Ballard, M. Hayhoe, P. Pook, and R. Rao. Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20(4):723-742, 1997. DOI: 10.1017/S0140525X97001611 10
    • (1997) Behavioral and Brain Sciences , vol.20 , Issue.4 , pp. 723-742
    • Ballard, D.1    Hayhoe, M.2    Pook, P.3    Rao, R.4
  • 17
    • 0029210635 scopus 로고
    • Learning to act using real-time dynamic programming
    • DOI: 10.1016/0004-3702(94)00011-O 72, 86, 90
    • A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming. Artificial Intelligence, 72:81-138, 1995. DOI: 10.1016/0004-3702(94)00011-O 72, 86, 90
    • (1995) Artificial Intelligence , vol.72 , pp. 81-138
    • Barto, A.1    Bradtke, S.2    Singh, S.3
  • 19
  • 20
    • 0036874366 scopus 로고    scopus 로고
    • E complexity of decentralized control of markov decision processes
    • DOI: 10.1287/moor.27.4.819.297 108
    • D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. ?e complexity of decentralized control of markov decision processes. Mathematics of Operations Research, 27(4):819-840, 2002. DOI: 10.1287/moor.27.4.819.297 108
    • (2002) Mathematics of Operations Research , vol.27 , Issue.4 , pp. 819-840
    • Bernstein, D.S.1    Givan, R.2    Immerman, N.3    Zilberstein, S.4
  • 26
    • 0003565783 scopus 로고
    • Dynamic programming and optimal control vols 1 and 2
    • 31, 70, 76, 79, 81, 82,84
    • D. P. Bertsekas. Dynamic Programming and Optimal Control, Vols 1 and 2. Athena Scientific, 1995. 6, 31, 70, 76, 79, 81, 82, 84
    • (1995) Athena Scientific , vol.6
    • Bertsekas, D.P.1
  • 28
    • 0031074857 scopus 로고
    • Fast planning through planning graph analysis
    • DOI: 10.1016/S0004-3702(96)00047-1 13, 31, 45
    • A. Blum and M. Furst. Fast planning through planning graph analysis. In Proc. 14th Int. Joint Conf. on Artificial Intelligence, pages 1636-1642, 1995. DOI: 10.1016/S0004-3702(96)00047-1 13, 31, 45
    • (1995) Proc. 14th Int. Joint Conf. on Artificial Intelligence , pp. 1636-1642
    • Blum, A.1    Furst, M.2
  • 29
    • 84943277296 scopus 로고    scopus 로고
    • Planning as heuristic search: New results
    • DOI: 10.1007/10720246-28 44
    • B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proc. 5th European Conf. on Planning, pages 359-371, 1999. DOI: 10.1007/10720246-28 44
    • (1999) Proc. 5th European Conf. on Planning , pp. 359-371
    • Bonet, B.1    Geffner, H.2
  • 31
    • 0035369022 scopus 로고    scopus 로고
    • Planning as heuristic search
    • DOI: 10.1016/S0004-3702(01)00108-4 27, 30,31
    • B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1-2):5-33, 2001. DOI: 10.1016/S0004-3702(01)00108-4 27, 30, 31
    • (2001) Artificial Intelligence , vol.129 , Issue.1-2 , pp. 5-33
    • Bonet, B.1    Geffner, H.2
  • 32
    • 84880851659 scopus 로고    scopus 로고
    • Faster heuristic search algorithms for planning with uncertainty and full feedback
    • B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncertainty and full feedback. In Proc. 18th Int. Joint Conf. on Artificial Intelligence, pages 1233-1238, 2003. 88, 89
    • (2003) Proc. 18th Int. Joint Conf. on Artificial Intelligence , vol.88 , Issue.89 , pp. 1233-1238
    • Bonet, B.1    Geffner, H.2
  • 34
    • 31144438031 scopus 로고    scopus 로고
    • A probabilistic planner based on heuristic search
    • mGPT DOI: 10.1613/jair.1688
    • B. Bonet and H. Geffner. mGPT: A probabilistic planner based on heuristic search. Journal of Artificial Intelligence Research, 24:933-944, 2005. DOI: 10.1613/jair.1688
    • (2005) Journal of Artificial Intelligence Research , vol.24 , pp. 933-944
    • Bonet, B.1    Geffner, H.2
  • 36
    • 84880112427 scopus 로고    scopus 로고
    • Planning under partial observability by classical replanning: Theory and experiments
    • DOI: 10.5591/978-1-57735-516-8/IJCAI11-324 57
    • B. Bonet and H. Geffner. Planning under partial observability by classical replanning: Theory and experiments. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 1936-1941, 2011. DOI: 10.5591/978-1-57735-516-8/ IJCAI11-324 57
    • Proc. 22nd Int. Joint Conf. on Artificial Intelligence , vol.2011 , pp. 1936-1941
    • Bonet, B.1    Geffner, H.2
  • 38
    • 84868288936 scopus 로고    scopus 로고
    • Width and complexity of belief tracking in non-deterministic conformant and contingent planning
    • B. Bonet and H. Geffner. Width and complexity of belief tracking in non-deterministic conformant and contingent planning. In Proc. 26nd Conf. on Artificial Intelligence, pages 1756-1762, 2012.
    • (2012) Proc. 26nd Conf. on Artificial Intelligence , pp. 1756-1762
    • Bonet, B.1    Geffner, H.2
  • 39
    • 84880124927 scopus 로고    scopus 로고
    • Causal belief decomposition for planning with sensing: Completeness and practical approximation
    • B. Bonet and H. Geffner. Causal belief decomposition for planning with sensing: Completeness and practical approximation. In Proc. 23rd Int. Joint Conf. on Artificial Intelligence, 2013. 75
    • (2013) Proc. 23rd Int. Joint Conf. on Artificial Intelligence , pp. 75
    • Bonet, B.1    Geffner, H.2
  • 42
    • 78650600888 scopus 로고    scopus 로고
    • Automatic derivation of memoryless policies and finite-state controllers using classical planners
    • 61
    • B. Bonet, H. Palacios, and H. Geffner. Automatic derivation of memoryless policies and finite-state controllers using classical planners. In Proc. 19th Int. Conf. on Automated Planning and Scheduling, pages 34-41, 2009. 10, 60, 61
    • (2009) Proc. 19th Int. Conf. on Automated Planning and Scheduling , vol.10 , Issue.60 , pp. 34-41
    • Bonet, B.1    Palacios, H.2    Geffner, H.3
  • 43
    • 74449093361 scopus 로고    scopus 로고
    • Conformant plans and beyond: Principles and complexity
    • DOI: 10.1016/j.artint.2009.11.001
    • B. Bonet. Conformant plans and beyond: Principles and complexity. Artificial Intelligence, 174:245-269, 2010. DOI: 10.1016/j.artint.2009.11.001
    • (2010) Artificial Intelligence , vol.174 , pp. 245-269
    • Bonet, B.1
  • 45
    • 0346942368 scopus 로고    scopus 로고
    • Decision-theoretic planning: Structural assumptions and computational leverage
    • DOI: 10.1613/jair.575
    • C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 1:1-93, 1999. DOI: 10.1613/jair.575
    • (1999) Journal of Artificial Intelligence Research , vol.1 , pp. 1-93
    • Boutilier, C.1    Dean, T.2    Hanks, S.3
  • 50
    • 84875158562 scopus 로고    scopus 로고
    • Replanning in domains with partial information and sensing actions
    • DOI: 10.1613/jair.3711 55, 57
    • R. I. Brafman and G. Shani. Replanning in domains with partial information and sensing actions. Journal of Artificial Intelligence Research, 1(45):565-600, 2012. DOI: 10.1613/jair.3711 55, 57
    • (2012) Journal of Artificial Intelligence Research , vol.1 , Issue.45 , pp. 565-600
    • Brafman, R.I.1    Shani, G.2
  • 51
    • 0041965975 scopus 로고    scopus 로고
    • R-max-a general polynomial time algorithm for nearoptimal reinforcement learning
    • DOI: 10.1162/153244303765208377
    • R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for nearoptimal reinforcement learning. Journal of Machine Learning Research, 3:213-231, 2003. DOI: 10.1162/153244303765208377
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 213-231
    • Brafman, R.I.1    Tennenholtz, M.2
  • 55
    • 0028498153 scopus 로고
    • Ecomputational complexity of propositional STRIPS planning
    • DOI: 10.1016/0004-3702(94)90081-7 8, 16,34
    • T. Bylander. ?e computational complexity of propositional STRIPS planning. Artificial Intelligence, 69:165-204, 1994. DOI: 10.1016/0004-3702(94) 90081-7 8, 16, 34
    • (1994) Artificial Intelligence , vol.69 , pp. 165-204
    • Bylander, T.1
  • 57
    • 0002227762 scopus 로고
    • Penguins can make cake
    • 10, 12
    • D. Chapman. Penguins can make cake. AI Magazine, 10(4):45-50, 1989. 10, 12
    • (1989) AI Magazine , vol.10 , Issue.4 , pp. 45-50
    • Chapman, D.1
  • 60
    • 0038517219 scopus 로고    scopus 로고
    • Weak, strong, and strong cyclic planning via symbolic model checking
    • DOI: 10.1016/S0004-3702(02)00374-0,76
    • A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 147(1):35-84, 2003. DOI: 10.1016/S0004-3702(02)00374-0 76
    • (2003) Artificial Intelligence , vol.147 , Issue.1 , pp. 35-84
    • Cimatti, A.1    Pistore, M.2    Roveri, M.3    Traverso, P.4
  • 61
    • 4644364683 scopus 로고    scopus 로고
    • Conformant planning via symbolic model checking and heuristic search
    • DOI: 10.1016/j.artint.2004.05.003 55
    • A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model checking and heuristic search. Artificial Intelligence, 159:127-206, 2004. DOI: 10.1016/j.artint.2004.05.003 55
    • (2004) Artificial Intelligence , vol.159 , pp. 127-206
    • Cimatti, A.1    Roveri, M.2    Bertoli, P.3
  • 67
    • 0032141813 scopus 로고    scopus 로고
    • Pattern databases
    • DOI: 10.1111/0824-7935.00065
    • J. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):318-334, 1998. DOI: 10.1111/0824-7935.00065
    • (1998) Computational Intelligence , vol.14 , Issue.3 , pp. 318-334
    • Culberson, J.1    Schaeffer, J.2
  • 70
    • 84943277588 scopus 로고    scopus 로고
    • Automata-theoretic approach to planning for temporally extended goals
    • DOI: 10.1007/10720246-18
    • G. de Giacomo and M. Y. Vardi. Automata-theoretic approach to planning for temporally extended goals. In Proc. 5th European Conf. on Planning, pages 226-238, 1999. DOI: 10.1007/10720246-18
    • (1999) Proc. 5th European Conf. on Planning , pp. 226-238
    • De Giacomo, G.1    Vardi, M.Y.2
  • 72
    • 0026154176 scopus 로고
    • Temporal constraint networks
    • DOI: 10.1016/0004-3702(91)90006-6
    • R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61-95, 1991. DOI: 10.1016/0004-3702(91)90006-6
    • (1991) Artificial Intelligence , vol.49 , pp. 61-95
    • Dechter, R.1    Meiri, I.2    Pearl, J.3
  • 75
    • 34147120474 scopus 로고
    • A note on two problems in connexion with graphs
    • DOI: 10.1007/BF01386390
    • E. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269-271, 1959. DOI: 10.1007/BF01386390
    • (1959) Numerische Mathematik , vol.1 , Issue.1 , pp. 269-271
    • Dijkstra, E.1
  • 77
    • 0003326796 scopus 로고    scopus 로고
    • Sapa: A domain-independent heuristic metric temporal planner
    • M. B. Do and S. Kambhampati. Sapa: A domain-independent heuristic metric temporal planner. In Proc. 6th European Conf. on Planning, pages 82-91, 2001. 30
    • (2001) Proc. 6th European Conf. on Planning , vol.30 , pp. 82-91
    • Do, M.B.1    Kambhampati, S.2
  • 87
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • DOI: 10.1016/0004-3702(71)90010-5 12
    • R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 1:27-120, 1971. DOI: 10.1016/0004-3702(71)90010-5 12
    • (1971) Artificial Intelligence , vol.1 , pp. 27-120
    • Fikes, R.1    Nilsson, N.2
  • 89
    • 27444434099 scopus 로고    scopus 로고
    • PDDL 2.1: An extension to PDDL for expressing temporal planning domains
    • M. Fox and D. Long. PDDL 2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20:61-124, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.20 , pp. 61-124
    • Fox, M.1    Long, D.2
  • 90
    • 0019899621 scopus 로고
    • A sufficient condition for backtrack-free search
    • DOI: 10.1145/322290.322292
    • E. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24-32, 1982. DOI: 10.1145/322290.322292
    • (1982) Journal of the ACM , vol.29 , Issue.1 , pp. 24-32
    • Freuder, E.1
  • 91
    • 84866458358 scopus 로고    scopus 로고
    • Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems
    • DOI: 10.5591/978-1-57735-516-8/IJCAI11-326
    • J. Fu, V. Ng, F. Bastani, and I. Yen. Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 1949-1954, 2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-326
    • (2011) Proc. 22nd Int. Joint Conf. on Artificial Intelligence , pp. 1949-1954
    • Fu, J.1    Ng, V.2    Bastani, F.3    Yen, I.4
  • 92
    • 84898688040 scopus 로고    scopus 로고
    • Combining the expressiveness of UCPOP with the efficiency of Graphplan
    • B. Gazen and C. Knoblock. Combining the expressiveness of UCPOP with the efficiency of Graphplan. In Proc. 4th European Conf. on Planning, pages 221-233, 1997. 26
    • (1997) Proc. 4th European Conf. on Planning , vol.26 , pp. 221-233
    • Gazen, B.1    Knoblock, C.2
  • 94
    • 84872299662 scopus 로고    scopus 로고
    • Heuristics planning, cognition
    • R. Dechter, H. Geffner, and J. Y. Halpern, editors College Publications
    • H. Geffner. Heuristics, planning, cognition. In R. Dechter, H. Geffner, and J. Y. Halpern, editors, Heuristics, Probability and Causality. A Tribute to Judea Pearl. College Publications, 2010.
    • (2010) Heuristics, Probability and Causality. A Tribute to Judea Pearl
    • Geffner, H.1
  • 95
    • 84880082503 scopus 로고    scopus 로고
    • Artificial intelligence: From programs to solvers
    • DOI: 10.3233/978-1-58603-925-7-4
    • H. Geffner. Artificial Intelligence: From Programs to Solvers. AI Communications, 2013. DOI: 10.3233/978-1-58603-925-7-4
    • (2013) AI Communications
    • Geffner, H.1
  • 97
    • 67349165700 scopus 로고    scopus 로고
    • A probabilistic plan recognition algorithm based on plan tree grammars
    • DOI: 10.1016/j.artint.2009.01.003
    • C. W. Geib and R. P. Goldman. A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence, 173(11):1101-1132, 2009. DOI: 10.1016/j.artint.2009.01.003
    • (2009) Artificial Intelligence , vol.173 , Issue.11 , pp. 1101-1132
    • Geib, C.W.1    Goldman, R.P.2
  • 98
    • 34547990649 scopus 로고    scopus 로고
    • Combining online and offline knowledge in UCT
    • DOI: 10.1145/1273496.1273531
    • S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proc. 24th Int. Conf. on Machine Learning, pages 273-280, 2007. DOI: 10.1145/1273496.1273531
    • (2007) Proc. 24th Int. Conf. on Machine Learning , pp. 273-280
    • Gelly, S.1    Silver, D.2
  • 99
    • 41049115532 scopus 로고    scopus 로고
    • An approach to efficient planning with numerical fluents and multi-criteria plan quality
    • DOI: 10.1016/j.artint.2008.01.002
    • A. E. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning with numerical fluents and multi-criteria plan quality. Artificial Intelligence, 172(8):899-944, 2008. DOI: 10.1016/j.artint.2008.01.002
    • (2008) Artificial Intelligence , vol.172 , Issue.8 , pp. 899-944
    • Gerevini, A.E.1    Saetti, A.2    Serina, I.3
  • 100
    • 60549110392 scopus 로고    scopus 로고
    • Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners
    • DOI: 10.1016/j.artint.2008.10.012 25
    • A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artificial Intelligence, 173(5-6):619-668, 2009. DOI: 10.1016/j.artint.2008.10.012 25
    • (2009) Artificial Intelligence , vol.173 , Issue.5-6 , pp. 619-668
    • Gerevini, A.E.1    Haslum, P.2    Long, D.3    Saetti, A.4    Dimopoulos, Y.5
  • 102
    • 58149097214 scopus 로고    scopus 로고
    • Automated Planning: Theory and practice
    • M. Ghallab, D. Nau, and P. Traverso. Automated Planning: theory and practice. Morgan Kaufmann, 2004. xi, 13, 46
    • (2004) Morgan Kaufmann , vol.11 , Issue.13 , pp. 46
    • Ghallab, M.1    Nau, D.2    Traverso, P.3
  • 104
    • 0024885107 scopus 로고
    • Universal planning: An (almost) universally bad idea
    • M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine, 10(4):40-44, 1989.
    • (1989) AI Magazine , vol.10 , Issue.4 , pp. 40-44
    • Ginsberg, M.L.1
  • 106
    • 0742271426 scopus 로고    scopus 로고
    • A theory of causal learning in children: Causal maps and bayes nets
    • DOI: 10.1037/0033-295X.111.1.3
    • A. Gopnik, C. Glymour, D. Sobel, L. Schulz, T. Kushnir, and D. Danks. A theory of causal learning in children: Causal maps and bayes nets. Psychological Review, 111(1):3-31, 2004. DOI: 10.1037/0033-295X.111.1.3
    • (2004) Psychological Review , vol.111 , Issue.1 , pp. 3-31
    • Gopnik, A.1    Glymour, C.2    Sobel, D.3    Schulz, L.4    Kushnir, T.5    Danks, D.6
  • 108
    • 0035369425 scopus 로고    scopus 로고
    • LAO A heuristic search algorithm that finds solutions with loops
    • DOI: 10.1016/S0004-3702(01)00106-0 72
    • E. A. Hansen and S. Zilberstein. LAO: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129:35-62, 2001. DOI: 10.1016/S0004-3702(01)00106-0 72
    • (2001) Artificial Intelligence , vol.129 , pp. 35-62
    • Hansen, E.A.1    Zilberstein, S.2
  • 110
    • 84899829959 scopus 로고
    • A formal basis for the heuristic determination of minimum cost paths
    • DOI: 10.1109/TSSC.1968.300136
    • P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics, 4:100-107, 1968. DOI: 10.1109/TSSC.1968.300136
    • (1968) IEEE Trans. on Systems Science and Cybernetics , vol.4 , pp. 100-107
    • Hart, P.1    Nilsson, N.2    Raphael, B.3
  • 112
    • 84943278573 scopus 로고    scopus 로고
    • Some results on the complexity of planning with incomplete information
    • DOI: 10.1007/10720246-24
    • P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete information. In Proc. 5th European Conf. on Planning, pages 308-318, 1999. DOI: 10.1007/10720246-24
    • (1999) Proc. 5th European Conf. on Planning , pp. 308-318
    • Haslum, P.1    Jonsson, P.2
  • 118
    • 33749001469 scopus 로고    scopus 로고
    • Fast Downward planning system
    • DOI: 10.1613/jair.1705 33, 38
    • M. Helmert. ? Fast Downward planning system. Journal of Artificial Intelligence Research, 26:191-246, 2006. DOI: 10.1613/jair.1705 33, 38
    • (2006) Journal of Artificial Intelligence Research , vol.26 , pp. 191-246
    • Helmert, M.1
  • 119
    • 60549086221 scopus 로고    scopus 로고
    • Concise finite-domain representations for PDDL planning tasks
    • DOI: 10.1016/j.artint.2008.10.013
    • M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial Intelligence, 173(5):503-535, 2009. DOI: 10.1016/j.artint. 2008.10.013
    • (2009) Artificial Intelligence , vol.173 , Issue.5 , pp. 503-535
    • Helmert, M.1
  • 122
    • 33645339523 scopus 로고    scopus 로고
    • Conformant planning via heuristic forward search: A new approach
    • DOI: 10.1016/j.artint.2006.01.003 55
    • J. Hoffmann and R. I. Brafman. Conformant planning via heuristic forward search: A new approach. Artificial Intelligence, 170:507-541, 2006. DOI: 10.1016/j.artint.2006.01.003 55
    • (2006) Artificial Intelligence , vol.170 , pp. 507-541
    • Hoffmann, J.1    Brafman, R.I.2
  • 123
    • 0036377352 scopus 로고    scopus 로고
    • FF planning system: Fast plan generation through heuristic search
    • DOI: 10.1613/jair.855 13, 31,37
    • J. Hoffmann and B. Nebel. ?e FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001. DOI: 10.1613/jair.855 13, 31, 37
    • (2001) Journal of Artificial Intelligence Research , vol.14 , pp. 253-302
    • Hoffmann, J.1    Nebel, B.2
  • 126
    • 13444301819 scopus 로고    scopus 로고
    • Metric-FF planning system: Translating ignoring delete lists" to numeric state variables
    • DOI: 10.1613/jair.1144
    • J. Hoffmann. Metric-FF planning system: Translating "ignoring delete lists" to numeric state variables. Journal of Artificial Intelligence Research, 20:291-341, 2003. DOI: 10.1613/jair.1144
    • (2003) Journal of Artificial Intelligence Research , vol.20 , pp. 291-341
    • Hoffmann, J.1
  • 127
    • 31144454040 scopus 로고    scopus 로고
    • Where ignoring delete lists' works: Local search topology in planning benchmarks
    • DOI: 10.1613/jair.1747
    • J. Hoffmann. Where 'ignoring delete lists' works: Local search topology in planning benchmarks. Journal of Artificial Intelligence Research, 24:685-758, 2005. DOI: 10.1613/jair.1747
    • (2005) Journal of Artificial Intelligence Research , vol.24 , pp. 685-758
    • Hoffmann, J.1
  • 128
    • 80053395461 scopus 로고    scopus 로고
    • Analyzing search topology without running any search: On the connection between causal graphs and hC
    • DOI: 10.1613/jair.3276
    • J. Hoffmann. Analyzing search topology without running any search: On the connection between causal graphs and hC. Journal of Artificial Intelligence Research, 41:155-229, 2011. DOI: 10.1613/jair.3276
    • (2011) Journal of Artificial Intelligence Research , vol.41 , pp. 155-229
    • Hoffmann, J.1
  • 131
    • 84880107329 scopus 로고    scopus 로고
    • Generalized planning: Synthesizing plans that work for multiple environments
    • DOI: 10.5591/978-1-57735-516-8/IJCAI11-159
    • Y. Hu and G. de Giacomo. Generalized planning: Synthesizing plans that work for multiple environments. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 918-923, 2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-159
    • (2011) Proc. 22nd Int. Joint Conf. on Artificial Intelligence , pp. 918-923
    • Hu, Y.1    De Giacomo, G.2
  • 132
  • 134
    • 0035369907 scopus 로고    scopus 로고
    • Sokoban: Enhancing general single-agent search methods using domain knowledge
    • DOI: 10.1016/S0004-3702(01)00109-6
    • A. Junghanns and J. Schaeffer. Sokoban: Enhancing general single-agent search methods using domain knowledge. Artificial Intelligence, 129(1):219-251, 2001. DOI: 10.1016/S0004-3702(01)00109-6
    • (2001) Artificial Intelligence , vol.129 , Issue.1 , pp. 219-251
    • Junghanns, A.1    Schaeffer, J.2
  • 136
    • 0032073263 scopus 로고    scopus 로고
    • Planning and acting in partially observable stochastic domains
    • DOI: 10.1016/S0004-3702(98)00023-X 6, 13, 101, 107 Daniel Kahneman. ?inking, fast and slow Farrar, Straus and Giroux, 2011
    • L. P. Kaelbling, M. L. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134, 1998. DOI: 10.1016/S0004-3702(98)00023-X 6, 13, 101, 107 Daniel Kahneman. ?inking, fast and slow. Farrar, Straus and Giroux, 2011.
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 99-134
    • Kaelbling, L.P.1    Littman, M.L.2    Cassandra, A.3
  • 137
    • 0029333545 scopus 로고
    • Planning as refinement search: A unified framework for evaluating design tradeoffs in partial-order planning
    • DOI: 10.1016/0004-3702(94)00076-D
    • S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76(1-2):167-238, 1995. DOI: 10.1016/0004-3702(94)00076- D
    • (1995) Artificial Intelligence , vol.76 , Issue.1-2 , pp. 167-238
    • Kambhampati, S.1    Knoblock, C.2    Yang, Q.3
  • 139
    • 58849086790 scopus 로고    scopus 로고
    • Optimal additive composition of abstraction-based admissible heuristics
    • DOI: 10.1016/j.artint.2010.04.021
    • M. Katz and C. Domshlak. Optimal additive composition of abstraction-based admissible heuristics. In Proc. 18th Int. Conf. on Automated Planning and Scheduling, pages 174-181, 2008. DOI: 10.1016/j.artint.2010.04.021
    • (2008) Proc. 18th Int. Conf. on Automated Planning and Scheduling , pp. 174-181
    • Katz, M.1    Domshlak, C.2
  • 143
    • 0030352389 scopus 로고    scopus 로고
    • Pushing the envelope: Planning, propositional logic, and stochastic search
    • H. A. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic search. In Proc. 13th Nat. Conf. on Artificial Intelligence, pages 1194-1201, 1996. 13, 45
    • (1996) Proc. 13th Nat. Conf. on Artificial Intelligence , vol.13 , Issue.45 , pp. 1194-1201
    • Kautz, H.A.1    Selman, B.2
  • 146
    • 84879223199 scopus 로고    scopus 로고
    • Heuristics for planning with action costs revisited
    • DOI: 10.3233/978-1-58603-891-5-588
    • E. Keyder and H. Geffner. Heuristics for planning with action costs revisited. In Proc. 18th European Conf. on Artificial Intelligence, pages 588-592, 2008. DOI: 10.3233/978-1-58603-891-5-588
    • (2008) Proc. 18th European Conf. on Artificial Intelligence , pp. 588-592
    • Keyder, E.1    Geffner, H.2
  • 152
    • 59849106768 scopus 로고    scopus 로고
    • Comparing real-time and incremental heuristic search for real-time situated agents
    • DOI: 10.1007/s10458-008-9061-x
    • S. Koenig and X. Sun. Comparing real-time and incremental heuristic search for real-time situated agents. Journal of Autonomous Agents and Multi-Agent Systems, 18(3):313-341, 2009. DOI: 10.1007/s10458-008-9061-x
    • (2009) Journal of Autonomous Agents and Multi-Agent Systems , vol.18 , Issue.3 , pp. 313-341
    • Koenig, S.1    Sun, X.2
  • 155
    • 0022129301 scopus 로고
    • Depth-first iterative-deepening: An optimal admissible tree search
    • DOI: 10.1016/0004-3702(85)90084-0
    • R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27(1):97-109, 1985. DOI: 10.1016/0004-3702(85) 90084-0
    • (1985) Artificial Intelligence , vol.27 , Issue.1 , pp. 97-109
    • Korf, R.E.1
  • 156
    • 0023421864 scopus 로고
    • Planning as search: A quantitative approach
    • DOI: 10.1016/0004-3702(87)90051-8 34
    • R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence, 33(1):65-88, 1987. DOI: 10.1016/0004-3702(87)90051-8 34
    • (1987) Artificial Intelligence , vol.33 , Issue.1 , pp. 65-88
    • Korf, R.E.1
  • 157
    • 0025400088 scopus 로고
    • Real-time heuristic search
    • DOI: 10.1016/0004-3702(90)90054-4 21
    • R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990. DOI: 10.1016/0004-3702(90)90054-4 21
    • (1990) Artificial Intelligence , vol.42 , pp. 189-211
    • Korf, R.E.1
  • 161
    • 84878786771 scopus 로고    scopus 로고
    • Width and serialization of classical planning problems
    • DOI: 10.3233/978-1-61499-098-7-540 35
    • N. Lipovetzky and H. Geffner. Width and serialization of classical planning problems. In Proc. 20th European Conf. on Artificial Intelligence, pages 540-545, 2012. DOI: 10.3233/978-1-61499-098-7-540 35
    • Proc. 20th European Conf. on Artificial Intelligence , vol.2012 , pp. 540-545
    • Lipovetzky, N.1    Geffner, H.2
  • 164
  • 168
    • 84863855328 scopus 로고    scopus 로고
    • Planning with Markov decision processes: An AI perspective
    • DOI: 10.2200/S00426ED1V01Y201206AIM017 92
    • Mausam and A. Kolobov. Planning with Markov Decision Processes: An AI Perspective. Morgan & Claypool, 2012. DOI: 10.2200/S00426ED1V01Y201206AIM017 92
    • Morgan & Claypool , vol.2012
    • Mausam1    Kolobov, A.2
  • 172
    • 0033522716 scopus 로고    scopus 로고
    • Using regression-match graphs to control search in planning
    • DOI: 10.1016/S0004-3702(99)00010-7 27
    • D. V. McDermott. Using regression-match graphs to control search in planning. Artificial Intelligence, 109(1-2):111-159, 1999. DOI: 10.1016/S0004-3702(99)00010-7 27
    • (1999) Artificial Intelligence , vol.109 , Issue.1-2 , pp. 111-159
    • McDermott, D.V.1
  • 174
    • 84937350040 scopus 로고
    • Steps toward artificial intelligence
    • DOI: 10.1109/JRPROC.1961.287775
    • M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8-30, 1961. DOI: 10.1109/JRPROC.1961.287775
    • (1961) Proceedings of the IRE , vol.49 , Issue.1 , pp. 8-30
    • Minsky, M.1
  • 177
    • 14344285181 scopus 로고    scopus 로고
    • On the compilability and expressive power of propositional planning formalisms
    • DOI: 10.1613/jair.735
    • B. Nebel. On the compilability and expressive power of propositional planning formalisms. Journal of Artificial Intelligence Research, 12:271-315, 2000. DOI: 10.1613/jair.735
    • (2000) Journal of Artificial Intelligence Research , vol.12 , pp. 271-315
    • Nebel, B.1
  • 178
    • 0002921687 scopus 로고
    • GPS, a program that simulates human thought
    • H. Billing, editor R. Oldenbourg
    • A. Newell and H. A. Simon. GPS, a program that simulates human thought. In H. Billing, editor, Lernende Automaten, pages 109-124. R. Oldenbourg, 1961.
    • (1961) Lernende Automaten , pp. 109-124
    • Newell, A.1    Simon, H.A.2
  • 181
    • 31344438078 scopus 로고
    • Principles of artificial intelligence
    • N. Nilsson. Principles of Artificial Intelligence. Tioga, 1980. 44, 71
    • (1980) Tioga , vol.44 , pp. 71
    • Nilsson, N.1
  • 182
    • 77956048571 scopus 로고    scopus 로고
    • Compiling uncertainty away in conformant planning problems with bounded width
    • DOI: 10.1613/jair.2708 54, 55, 57,73
    • H. Palacios and H. Geffner. Compiling uncertainty away in conformant planning problems with bounded width. Journal of Artificial Intelligence Research, 35:623-675, 2009. DOI: 10.1613/jair.2708 54, 55, 57, 73
    • (2009) Journal of Artificial Intelligence Research , vol.35 , pp. 623-675
    • Palacios, H.1    Geffner, H.2
  • 185
    • 0004286550 scopus 로고
    • Addison-Wesley 17, 18, 19, 23
    • J. Pearl. Heuristics. Addison-Wesley, 1983. 17, 18, 19, 23
    • (1983) Heuristics
    • Pearl, J.1
  • 186
    • 0005324651 scopus 로고
    • Probabilistic reasoning in intelligent systems
    • J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988. 58, 74
    • (1988) Morgan Kaufmann , vol.58 , pp. 74
    • Pearl, J.1
  • 189
    • 52249090123 scopus 로고    scopus 로고
    • Anytime point-based approximations for large POMDPs
    • DOI: 10.1613/jair.2078
    • J. Pineau, G. J. Gordon, and S. run. Anytime point-based approximations for large POMDPs. Journal of Artificial Intelligence Research, 27:335-380, 2006. DOI: 10.1613/jair.2078
    • (2006) Journal of Artificial Intelligence Research , vol.27 , pp. 335-380
    • Pineau, J.1    Gordon, G.J.2    Run, S.3
  • 193
    • 77958537867 scopus 로고    scopus 로고
    • Probabilistic plan recognition using off-the-shelf classical planners
    • M. Ramírez and H. Geffner. Probabilistic plan recognition using off-the-shelf classical planners. In Proc. 24th Conf. on Artificial Intelligence, pages 1121-1126, 2010. 58
    • (2010) Proc. 24th Conf. on Artificial Intelligence , vol.58 , pp. 1121-1126
    • Ramírez, M.1    Geffner, H.2
  • 194
    • 84881061777 scopus 로고    scopus 로고
    • Goal recognition over POMDPs: Inferring the intention of a POMDP agent
    • DOI: 10.5591/978-1-57735-516-8/IJCAI11-335
    • M. Ramírez and H. Geffner. Goal recognition over POMDPs: Inferring the intention of a POMDP agent. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 2009-2014, 2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-335
    • (2011) Proc. 22nd Int. Joint Conf. on Artificial Intelligence , pp. 2009-2014
    • Ramírez, M.1    Geffner, H.2
  • 195
    • 77956050972 scopus 로고    scopus 로고
    • LAMA planner: Guiding cost-based anytime planning with landmarks
    • DOI: 10.1613/jair.2972 13, 20, 33, 38
    • S. Richter and M. Westphal. ?e LAMA planner: Guiding cost-based anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:127-177, 2010. DOI: 10.1613/jair.2972 13, 20, 33, 38
    • (2010) Journal of Artificial Intelligence Research , vol.39 , pp. 127-177
    • Richter, S.1    Westphal, M.2
  • 199
  • 200
    • 84866502355 scopus 로고    scopus 로고
    • Planning as satisfiability: Heuristics
    • DOI: 10.1016/j.artint.2012.08.001
    • J. Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45-86, 2012. DOI: 10.1016/j.artint.2012.08.001
    • (2012) Artificial Intelligence , vol.193 , pp. 45-86
    • Rintanen, J.1
  • 203
    • 0016069798 scopus 로고
    • Planning in a hierarchy of abstraction spaces
    • DOI: 10.1016/0004-3702(74)90026-5
    • E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2):115-135, 1974. DOI: 10.1016/0004-3702(74)90026-5
    • (1974) Artificial Intelligence , vol.5 , Issue.2 , pp. 115-135
    • Sacerdoti, E.D.1
  • 206
    • 60549103706 scopus 로고    scopus 로고
    • Practical solution techniques for first-order MDPs
    • DOI: 10.1016/j.artint.2008.11.003
    • S. Sanner and C. Boutilier. Practical solution techniques for first-order MDPs. Artificial Intelligence, 173(5-6):748-788, 2009. DOI: 10.1016/j.artint.2008.11.003
    • (2009) Artificial Intelligence , vol.173 , Issue.5-6 , pp. 748-788
    • Sanner, S.1    Boutilier, C.2
  • 209
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • DOI: 10.1126/science.275.5306.1593
    • W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward. Science, 275(5306):1593-1599, 1997. DOI: 10.1126/science.275.5306.1593
    • (1997) Science , vol.275 , Issue.5306 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 210
    • 84873747053 scopus 로고    scopus 로고
    • A survey of point-based POMDP solvers
    • Online-First Article DOI: 10.1007/s10458-012-9200-2 102
    • G. Shani, J. Pineau, and R. Kaplow. A survey of point-based POMDP solvers. Journal of Autonomous Agents and Multi-Agent Systems, pages 1-51, 2012. Online-First Article. DOI: 10.1007/s10458-012-9200-2 102
    • (2012) Journal of Autonomous Agents and Multi-Agent Systems , pp. 1-51
    • Shani, G.1    Pineau, J.2    Kaplow, R.3
  • 212
    • 84959810873 scopus 로고
    • A behavioral model of rational choice
    • DOI: 10.2307/1884852
    • H. A. Simon. A behavioral model of rational choice. Quarterly Journal of Economics, 69(1):99-118, 1955. DOI: 10.2307/1884852
    • (1955) Quarterly Journal of Economics , vol.69 , Issue.1 , pp. 99-118
    • Simon, H.A.1
  • 214
    • 84880092396 scopus 로고    scopus 로고
    • Introduction to ?eory of Computation
    • Boston, MA, 2nd edition
    • M. Sipser. Introduction to ?eory of Computation.Omson Course Technology, Boston, MA, 2nd edition, 2006. 8, 45
    • (2006) Omson Course Technology , vol.8 , pp. 45
    • Sipser, M.1
  • 215
    • 0015658957 scopus 로고
    • Eoptimal control of partially observable Markov processes over a finite horizon
    • DOI: 10.1287/opre.21.5.1071
    • R. Smallwood and E. Sondik. ?e optimal control of partially observable Markov processes over a finite horizon. Operations Research, 21:1071-1088, 1973. DOI: 10.1287/opre.21.5.1071
    • (1973) Operations Research , vol.21 , pp. 1071-1088
    • Smallwood, R.1    Sondik, E.2
  • 218
    • 0034155410 scopus 로고    scopus 로고
    • Bridging the gap between planning and scheduling
    • DOI: 10.1017/S0269888900001089 47
    • D. E. Smith, J. Frank, and A. K. Jonsson. Bridging the gap between planning and scheduling. Knowledge Engineering Review, 15(1):47-83, 2000. DOI: 10.1017/S0269888900001089 47
    • (2000) Knowledge Engineering Review , vol.15 , Issue.1 , pp. 47-83
    • Smith, D.E.1    Frank, J.2    Jonsson, A.K.3
  • 220
    • 78650945131 scopus 로고    scopus 로고
    • A new representation and associated algorithms for generalized planning
    • DOI: 10.1016/j.artint.2010.10.006
    • S. Srivastava, N. Immerman, and S. Zilberstein. A new representation and associated algorithms for generalized planning. Artificial Intelligence, 175(2):615-647, 2011. DOI: 10.1016/j.artint.2010.10.006
    • (2011) Artificial Intelligence , vol.175 , Issue.2 , pp. 615-647
    • Srivastava, S.1    Immerman, N.2    Zilberstein, S.3
  • 222
    • 29244482280 scopus 로고    scopus 로고
    • Real-time neuroevolution in the NERO video game
    • DOI: 10.1109/TEVC.2005.856210
    • K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuroevolution in the NERO video game. IEEE Trans. on Evolutionary Computation, 9(6):653-668, 2005. DOI: 10.1109/TEVC.2005.856210
    • (2005) IEEE Trans. on Evolutionary Computation , vol.9 , Issue.6 , pp. 653-668
    • Stanley, K.1    Bryant, B.2    Miikkulainen, R.3
  • 223
    • 0001060347 scopus 로고
    • Sufficient statistics in the control of stochastic systems
    • DOI: 10.1016/0022-247X(65)90027-2
    • C. Striebel. Sufficient statistics in the control of stochastic systems. Journal of Mathematical Analaysis and Applications, 12:576-592, 1965. DOI: 10.1016/0022-247X(65)90027-2
    • (1965) Journal of Mathematical Analaysis and Applications , vol.12 , pp. 576-592
    • Striebel, C.1
  • 225
    • 77955790905 scopus 로고    scopus 로고
    • Algorithms for reinforcement learning
    • DOI: 10.2200/S00268ED1V01Y201005AIM009
    • C. Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool Publishers, 2010. DOI: 10.2200/S00268ED1V01Y201005AIM009
    • (2010) Morgan & Claypool Publishers
    • Szepesvári, C.1
  • 226
    • 0001790593 scopus 로고
    • Depth first search and linear graph algorithms
    • DOI: 10.1137/0201010
    • R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972. DOI: 10.1137/0201010
    • (1972) SIAM Journal on Computing , vol.1 , Issue.2 , pp. 146-160
    • Tarjan, R.E.1
  • 228
    • 80055033540 scopus 로고    scopus 로고
    • On the effectiveness of CNF and DNF representations in contingent planning
    • DOI: 10.5591/978-1-57735-516-8/IJCAI11-339 55
    • S. T. To, E. Pontelli, and T. Cao Son. On the effectiveness of CNF and DNF representations in contingent planning. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 2033-2038, 2011. DOI: 10.5591/978-1-57735-516-8/ IJCAI11-339 55
    • (2011) Proc. 22nd Int. Joint Conf. on Artificial Intelligence , pp. 2033-2038
    • To, S.T.1    Pontelli, E.2    Cao Son, T.3
  • 229
    • 0001820048 scopus 로고
    • Psychological foundations of culture
    • J. Barkow ,L. Cosmides, and J. Tooby, editors, Oxford
    • J. Tooby and L. Cosmides. ?e psychological foundations of culture. In J. Barkow, L. Cosmides, and J. Tooby, editors, Adapted Mind. Oxford, 1992.
    • (1992) Adapted Mind
    • Tooby, J.1    Cosmides, L.2
  • 230
    • 33749234798 scopus 로고    scopus 로고
    • Probabilistic inference for solving discrete and continuous state markov decision processes
    • DOI: 10.1145/1143844.1143963
    • M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous state markov decision processes. In Proc. 23rd Int. Conf. on Machine Learning, pages 945-952, 2006. DOI: 10.1145/1143844.1143963
    • (2006) Proc. 23rd Int. Conf. on Machine Learning , pp. 945-952
    • Toussaint, M.1    Storkey, A.2
  • 231
    • 31144450955 scopus 로고    scopus 로고
    • Optiplan: Unifying IP-based and graph-based planning
    • DOI: 10.1613/jair.1698
    • M. van den Briel and S. Kambhampati. Optiplan: Unifying IP-based and graph-based planning. Journal of Artificial Intelligence Research, 24:919-931, 2005. DOI: 10.1613/jair.1698
    • (2005) Journal of Artificial Intelligence Research , vol.24 , pp. 919-931
    • Briel Den M.Van1    Kambhampati, S.2
  • 232
    • 0001909357 scopus 로고
    • Reasoning about infinite computations
    • DOI: 10.1006/inco.1994.1092
    • M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1-37, 1994. DOI: 10.1006/inco.1994.1092
    • (1994) Information and Computation , vol.115 , Issue.1 , pp. 1-37
    • Vardi, M.Y.1    Wolper, P.2
  • 234
    • 31144445319 scopus 로고    scopus 로고
    • Branching and pruning: An optimal temporal POCL planner based on constraint programming
    • DOI: 10.1016/j.artint.2005.08.004 13, 47
    • V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on constraint programming. Artificial Intelligence, 170(3):298-335, 2006. DOI: 10.1016/j.artint.2005.08.004 13, 47
    • (2006) Artificial Intelligence , vol.170 , Issue.3 , pp. 298-335
    • Vidal, V.1    Geffner, H.2
  • 236
    • 0028750404 scopus 로고
    • An introduction to least commitment planning
    • 44, 46
    • D. S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27-61, 1994. 44, 46
    • (1994) AI Magazine , vol.15 , Issue.4 , pp. 27-61
    • Weld, D.S.1
  • 238
    • 77958550016 scopus 로고    scopus 로고
    • Activity recognition: Linking low-level sensors to high-level intelligence
    • Q. Yang. Activity recognition: Linking low-level sensors to high-level intelligence. In Proc. 21st Int. Joint Conf. on Artificial Intelligence, pages 20-25, 2009.
    • (2009) Proc. 21st Int. Joint Conf. on Artificial Intelligence , pp. 20-25
    • Yang, Q.1
  • 240
    • 13444255563 scopus 로고    scopus 로고
    • Landmark extraction via planning graph propagation
    • L. Zhu and R. Givan. Landmark extraction via planning graph propagation. In ICAPS Doctoral Consortium, pages 156-160, 2003.
    • (2003) ICAPS Doctoral Consortium , pp. 156-160
    • Zhu, L.1    Givan, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.