메뉴 건너뛰기




Volumn 28, Issue , 2007, Pages 267-297

Anytime heuristic search

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; RECURSIVE FUNCTIONS; UNCERTAINTY ANALYSIS;

EID: 34249052595     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.2096     Document Type: Article
Times cited : (221)

References (40)
  • 1
    • 0020497017 scopus 로고
    • Search algorithms under different kinds of heuristics - a comparative study
    • Bagchi, A., & Mahanti, A. (1983). Search algorithms under different kinds of heuristics - a comparative study. Journal of the ACM, 30(1), 1-21.
    • (1983) Journal of the ACM , vol.30 , Issue.1 , pp. 1-21
    • Bagchi, A.1    Mahanti, A.2
  • 2
    • 34249017521 scopus 로고
    • Weighted heuristic search in networks
    • Bagchi, A., & Srimani, P. (1985). Weighted heuristic search in networks. Journal of Algorithms, 6, 550-576.
    • (1985) Journal of Algorithms , vol.6 , pp. 550-576
    • Bagchi, A.1    Srimani, P.2
  • 3
    • 0035369022 scopus 로고    scopus 로고
    • Planning as heuristic search
    • Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129(1), 5-33.
    • (2001) Artificial Intelligence , vol.129 , Issue.1 , pp. 5-33
    • Bonet, B.1    Geffner, H.2
  • 4
    • 0000303438 scopus 로고
    • The multiple sequence alignment problem in biology
    • Carillo, H., & Lipman, D. (1988). The multiple sequence alignment problem in biology. SIAM Journal of Applied Mathematics, 48(5), 1073-1082.
    • (1988) SIAM Journal of Applied Mathematics , vol.48 , Issue.5 , pp. 1073-1082
    • Carillo, H.1    Lipman, D.2
  • 5
    • 0023825499 scopus 로고
    • Admissibility of AO* when heuristics overestimate
    • Chakrabarti, P., Ghosh, S., & DeSarkar, S. (1988). Admissibility of AO* when heuristics overestimate. Artificial Intelligence, 34(1), 97-113.
    • (1988) Artificial Intelligence , vol.34 , Issue.1 , pp. 97-113
    • Chakrabarti, P.1    Ghosh, S.2    DeSarkar, S.3
  • 6
    • 0004864913 scopus 로고
    • The advantages of using depth and breadth components in heuristic search
    • Ras, Z, & Saitta, L, Eds
    • Davis, H., Bramanti-Gregor, A., & Wang, J. (1988). The advantages of using depth and breadth components in heuristic search. In Ras, Z., & Saitta, L. (Eds.), Methodologies for Intelligent Systems 3, pp. 19-28.
    • (1988) Methodologies for Intelligent Systems 3 , pp. 19-28
    • Davis, H.1    Bramanti-Gregor, A.2    Wang, J.3
  • 7
    • 0022094206 scopus 로고
    • Generalized best-first search strategies and the optimality of A*
    • Dechter, R., & Pearl, J. (1985). Generalized best-first search strategies and the optimality of A*. Journal of the ACM, 32(3), 505-536.
    • (1985) Journal of the ACM , vol.32 , Issue.3 , pp. 505-536
    • Dechter, R.1    Pearl, J.2
  • 10
    • 0035369425 scopus 로고    scopus 로고
    • LAO*: A heuristic search algorithm that finds solutions with loops
    • Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129(1-2), 35-62.
    • (2001) Artificial Intelligence, 129 , pp. 35-62
    • Hansen, E.1    Zilberstein, S.2
  • 12
    • 0016103321 scopus 로고
    • The heuristic search under conditions of error
    • Harris, L. (1974). The heuristic search under conditions of error. Artificial Intelligence, 5(3), 217-234.
    • (1974) Artificial Intelligence , vol.5 , Issue.3 , pp. 217-234
    • Harris, L.1
  • 15
    • 0346028522 scopus 로고
    • Fast A* algorithms for multiple sequence alignment
    • Ikeda, T., & Imai, T. (1994). Fast A* algorithms for multiple sequence alignment. In Genome Informatics Workshop 94, pp. 90-99.
    • (1994) Genome Informatics Workshop , vol.94 , pp. 90-99
    • Ikeda, T.1    Imai, T.2
  • 16
    • 0001650390 scopus 로고    scopus 로고
    • Enhanced A* algorithms for multiple alignments: Optimal alignments for several sequences and k-opt approximate alignments for large cases
    • Ikeda, T., & Imai, H. (1999). Enhanced A* algorithms for multiple alignments: Optimal alignments for several sequences and k-opt approximate alignments for large cases. Theoretical Computer Science, 210(2), 341-374.
    • (1999) Theoretical Computer Science , vol.210 , Issue.2 , pp. 341-374
    • Ikeda, T.1    Imai, H.2
  • 18
  • 20
    • 0022129301 scopus 로고
    • Depth-first iterative deepening: An optimal admissible tree search
    • Korf, R. (1985). Depth-first iterative deepening: An optimal admissible tree search. Artificial Intelligence, 27(1), 97-109.
    • (1985) Artificial Intelligence , vol.27 , Issue.1 , pp. 97-109
    • Korf, R.1
  • 21
    • 0025400088 scopus 로고
    • Real-time heuristic search
    • Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42(2-3), 197-221.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 197-221
    • Korf, R.1
  • 22
    • 0027623753 scopus 로고
    • Linear-space best-first search
    • Korf, R. (1993). Linear-space best-first search. Artificial Intelligence, 62(1), 41-78.
    • (1993) Artificial Intelligence , vol.62 , Issue.1 , pp. 41-78
    • Korf, R.1
  • 24
    • 9444231507 scopus 로고    scopus 로고
    • The 3rd international planning competition: Results and analysis
    • Long, D., & Fox, M. (2003). The 3rd international planning competition: Results and analysis. Journal of Artificial Intelligence Research, 20, 1-59.
    • (2003) Journal of Artificial Intelligence Research , vol.20 , pp. 1-59
    • Long, D.1    Fox, M.2
  • 28
    • 0014655433 scopus 로고
    • First results on the effect of error in heuristic search
    • Pohl, I. (1970a). First results on the effect of error in heuristic search. Machine Intelligence, 5, 219-236.
    • (1970) Machine Intelligence , vol.5 , pp. 219-236
    • Pohl, I.1
  • 29
    • 0000463496 scopus 로고
    • Heuristic search viewed as path finding in a graph
    • Pohl, I. (1970b). Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3), 193-204.
    • (1970) Artificial Intelligence , vol.1 , Issue.3 , pp. 193-204
    • Pohl, I.1
  • 30
    • 0345007698 scopus 로고
    • The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem-solving
    • Morgan Kaufmann
    • Pohl, I. (1973). The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem-solving. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI-73), pp. 12-17. Morgan Kaufmann.
    • (1973) Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI-73) , pp. 12-17
    • Pohl, I.1
  • 34
    • 0026190103 scopus 로고
    • Reducing reexpansions in iterative-deepening search by controlling cutoff bounds
    • Sarkar, U., Chakrabarti, P., Ghose, S., & DeSarkar, S. (1991). Reducing reexpansions in iterative-deepening search by controlling cutoff bounds. Artificial Intelligence, 50(2), 207-221.
    • (1991) Artificial Intelligence , vol.50 , Issue.2 , pp. 207-221
    • Sarkar, U.1    Chakrabarti, P.2    Ghose, S.3    DeSarkar, S.4
  • 35
    • 0037405586 scopus 로고    scopus 로고
    • Controlling the learning process of real-time heuristic search
    • Shimbo, M., & Ishida, T. (2003). Controlling the learning process of real-time heuristic search. Artificial Intelligence, 146(1), 1-41.
    • (2003) Artificial Intelligence , vol.146 , Issue.1 , pp. 1-41
    • Shimbo, M.1    Ishida, T.2
  • 40
    • 0030230721 scopus 로고    scopus 로고
    • Using anytime algorithms in intelligent systems
    • Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17(3), 73-83.
    • (1996) AI Magazine , vol.17 , Issue.3 , pp. 73-83
    • Zilberstein, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.