-
1
-
-
1942514241
-
Scaling internal-state policy-gradient methods for POMDPs
-
Sydney, Australia
-
D. Aberdeen and J. Baxter. Scaling internal-state policy-gradient methods for POMDPs. Proc. ICML-02, pp.3-10, Sydney, Australia, 2002.
-
(2002)
Proc. ICML-02
, pp. 3-10
-
-
Aberdeen, D.1
Baxter, J.2
-
2
-
-
0030349220
-
Computing optimal policies for partially observable decision processes using compact representations
-
Portland, OR
-
C. Boutilier and D. Poole. Computing optimal policies for partially observable decision processes using compact representations. Proc. AAAI-96, pp.1168-1175, Portland, OR, 1996.
-
(1996)
Proc. AAAI-96
, pp. 1168-1175
-
-
Boutilier, C.1
Poole, D.2
-
4
-
-
0001909869
-
Incremental pruning: A simple, fast, exact method for POMDPs
-
Providence, RI
-
A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for POMDPs. Proc.UAI-97, pp.54-61, Providence, RI, 1997.
-
(1997)
Proc.UAI-97
, pp. 54-61
-
-
Cassandra, A.R.1
Littman, M.L.2
Zhang, N.L.3
-
6
-
-
58349094926
-
Approximate planning for factored POMDPs
-
Toledo, Spain
-
Z. Feng and E. A. Hansen. Approximate planning for factored POMDPs. Proc. ECP-01, Toledo, Spain, 2001.
-
(2001)
Proc. ECP-01
-
-
Feng, Z.1
Hansen, E.A.2
-
7
-
-
0003125478
-
Solving POMDPs by searching in policy space
-
Madison, Wisconsin
-
E. A. Hansen. Solving POMDPs by searching in policy space. Proc. UAI-98, pp.211-219, Madison, Wisconsin, 1998.
-
(1998)
Proc. UAI-98
, pp. 211-219
-
-
Hansen, E.A.1
-
8
-
-
0001770240
-
Value-function approximations for partially observable Markov decision processes
-
M. Hauskrecht. Value-function approximations for partially observable Markov decision processes. Journal of Artificial Intelligence Research, 13:33-94, 2000.
-
(2000)
Journal of Artificial Intelligence Research
, vol.13
, pp. 33-94
-
-
Hauskrecht, M.1
-
10
-
-
0002500946
-
Solving POMDPs by searching the space of finite policies
-
Stockholm
-
N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R. Cassandra. Solving POMDPs by searching the space of finite policies. Proc. UAI-99, pp.417-426, Stockholm, 1999.
-
(1999)
Proc. UAI-99
, pp. 417-426
-
-
Meuleau, N.1
Kim, K.-E.2
Kaelbling, L.P.3
Cassandra, A.R.4
-
11
-
-
0002103968
-
Learning finite-state controllers for partially observable environments
-
Stockholm
-
N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite-state controllers for partially observable environments. Proc. UAI-99, pp.427-436, Stockholm, 1999.
-
(1999)
Proc. UAI-99
, pp. 427-436
-
-
Meuleau, N.1
Peshkin, L.2
Kim, K.-E.3
Kaelbling, L.P.4
-
12
-
-
84880772945
-
Point-based value iteration: An anytime algorithm for POMDPs
-
Acapulco, Mexico
-
J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. IJCAI-03, Acapulco, Mexico, 2003.
-
(2003)
Proc. IJCAI-03
-
-
Pineau, J.1
Gordon, G.2
Thrun, S.3
-
13
-
-
33748561594
-
Value-directed compressions of POMDPs
-
Vancouver, Canada
-
P. Poupart and C. Boutilier. Value-directed compressions of POMDPs. Proc. NIPS-02, pp.1547- 1554, Vancouver, Canada, 2002.
-
(2002)
Proc. NIPS-02
, pp. 1547-1554
-
-
Poupart, P.1
Boutilier, C.2
-
14
-
-
0036374229
-
Speeding up the convergence of value-iteration in partially observable Markov decision processes
-
N. L. Zhang and W. Zhang. Speeding up the convergence of value-iteration in partially observable Markov decision processes. Journal of Artificial Intelligence Research, 14:29-51, 2001.
-
(2001)
Journal of Artificial Intelligence Research
, vol.14
, pp. 29-51
-
-
Zhang, N.L.1
Zhang, W.2
|