-
1
-
-
84880889008
-
-
Amato, C., Bernstein, D. S., & Zilberstein, S. (2007). Solving POMDPs using quadratically constrained linear programs. In: Proceedings of the twentieth international joint conference on artificial intelligence. (pp. 2418-2424.) Hyderabad, India.
-
-
-
-
3
-
-
84880740944
-
-
Bernstein, D. S., Hansen, E., & Zilberstein, S. (2005). Bounded policy iteration for decentralized POMDPs. In: Proceedings of the nineteenth international joint conference on artificial intelligence. (pp. 1287-1292). Edinburgh, Scotland.
-
-
-
-
6
-
-
77954953364
-
-
Cassandra, A. R. (1998a). A survey of POMDP applications. In: AAAI fall symposium: Planning with POMDPs. Orlando, FL.
-
-
-
-
7
-
-
77954955348
-
-
Cassandra, A. R. (1998b). Exact and approximate algorithms for partially observable Markov decision processes. PhD thesis. Brown University Providence, RI.
-
-
-
-
8
-
-
0011718924
-
Optimum maintenance with incomplete information
-
Eckles J. E. (1968) Optimum maintenance with incomplete information. Operations Research 16: 1058-1067.
-
(1968)
Operations Research
, vol.16
, pp. 1058-1067
-
-
Eckles, J.E.1
-
9
-
-
4544325183
-
-
Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2004). Approximate solutions for partially observable stochastic games with common payoffs. In: Proceedings of the third international joint conference on autonomous agents and multiagent systems (pp. 136-143). New York, NY.
-
-
-
-
10
-
-
17444372724
-
Snopt: An SQP algorithm for large-scale constrained optimization
-
Gill P. E., Murray W., Saunders M. (2005) Snopt: An SQP algorithm for large-scale constrained optimization. SIAM Review 47: 99-131.
-
(2005)
SIAM Review
, vol.47
, pp. 99-131
-
-
Gill, P.E.1
Murray, W.2
Saunders, M.3
-
11
-
-
77954958062
-
-
Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In: Proceedings of the fourteenth conference on uncertainty in artificial intelligence. (pp. 211-219). Madison, WI.
-
-
-
-
12
-
-
9444233318
-
-
Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially observable stochastic games. In: Proceedings of the nineteenth national conference on artificial intelligence. (pp. 709-715). San Jose, CA.
-
-
-
-
13
-
-
0032246990
-
-
Hauskrecht, M., & Fraser, H. (1998). Modeling treatment of ischemic heart disease with partially observable Markov decision processes. In: Proceedings of American medical informatics association annual symposium on computer applications in health care. (pp. 538-542). Orlando, Florida.
-
-
-
-
15
-
-
36348942884
-
-
Ji, S., Parr, R., Li, H., Liao, X., & Carin, L. (2007). Point-based policy iteration. In: Proceedings of the twenty-second national conference on artificial intelligence. (pp. 1243-1249). Vancouver, Canada.
-
-
-
-
16
-
-
33646427325
-
-
Providence, RI: Brown University, Department of Computer Science
-
Littman M. L., Cassandra A. R., Kaelbling L. P. (1995) Learning policies for partially observable environments: Scaling up. Technical report CS-95-11. Brown University, Department of Computer Science, Providence, RI.
-
(1995)
Learning Policies for Partially Observable Environments: Scaling up. Technical Report CS-95-11
-
-
Littman, M.L.1
Cassandra, A.R.2
Kaelbling, L.P.3
-
17
-
-
84899969517
-
-
Marecki, J., Gupta, T., Varakantham, P., Tambe, M., & Yokoo, M. (2008). Not all agents are equal: Scaling up distributed POMDPs for agent networks. In: Proceedings of the seventh international joint conference on autonomous agents and multiagent systems. (pp. 485-492). Estoril, Portugal.
-
-
-
-
18
-
-
77954951286
-
-
Meuleau, N., Kim, K. E., Kaelbling, L. P., & Cassandra, A. R. (1999). Solving POMDPs by searching the space of finite policies. In: Proceedings of the fifteenth conference on uncertainty in artificial intelligence. (pp. 417-426). Stockholm, Sweden.
-
-
-
-
19
-
-
84880823326
-
-
Nair, R., Pynadath, D., Yokoo, M., Tambe, M., & Marsella, S. (2003). Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: Proceedings of the nineteenth international joint conference on artificial intelligence. (pp. 705-711). Acapulco, Mexico.
-
-
-
-
20
-
-
36348956362
-
-
Petrik, M., & Zilberstein, S. (2007). Average-reward decentralized Markov decision processes. In Proceedings of the twentieth international joint conference on artificial intelligence (pp. 1997-2002). Hyderabad, India.
-
-
-
-
21
-
-
84880772945
-
-
Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for POMDPs. In: Proceedings of the eighteenth international joint conference on artificial intelligence. (pp. 1025-1032). Acapulco, Mexico.
-
-
-
-
22
-
-
77954951770
-
-
Poupart, P. (2005). Exploiting structure to efficiently solve large scale partially observable Markov decision processes. PhD thesis. University of Toronto.
-
-
-
-
23
-
-
84898959164
-
Bounded finite state controllers
-
S. Thrun, L. Saul, B. Schölkopf (Eds.), Cambridge, MA: MIT Press
-
Poupart P., Boutilier C. (2004) Bounded finite state controllers. In: Thrun S., Saul L., Schölkopf B. (eds) Advances in neural information processing systems 16. MIT Press, Cambridge, MA.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Poupart, P.1
Boutilier, C.2
-
24
-
-
84880856384
-
-
Seuken, S., & Zilberstein, S. (2007a). Memory-bounded dynamic programming for DEC-POMDPs. In: Proceedings of the twentieth international joint conference on artificial intelligence. (pp. 2009-2015). Hyderabad, India.
-
-
-
-
25
-
-
51649085567
-
-
Seuken, S., & Zilberstein, S. (2007b). Improved memory-bounded dynamic programming for decentralized POMDPs. In: Proceedings of the twenty-third conference on uncertainty in artificial intelligence. Vancouver, Canada.
-
-
-
-
26
-
-
77954959889
-
-
Simmons, R., & Koenig, S. (1995). Probabilistic navigation in partially observable environments. In: Proceedings of the fourteenth international joint conference on artificial intelligence. (pp. 1080-1087). Montral, Canada.
-
-
-
-
27
-
-
77954953147
-
-
Singh, S., Jaakkola, T., & Jordan, M. (1994). Learning without state-estimation in partially observable Markovian decision processes. In: Proceedings of the eleventh international conference on machine learning. (pp. 284-292). New Brunswick, NJ.
-
-
-
-
28
-
-
77954957472
-
-
Smith, T., & Simmons, R. (2004). Heuristic search value iteration for POMDPs. In: Proceedings of the twentieth conference on uncertainty in artificial intelligence. (pp. 520-527). Banff, Canada.
-
-
-
-
29
-
-
85131708448
-
-
Smith, T., & Simmons, R. (2005). Point-based POMDP algorithms: Improved analysis and implementation. In: Proceedings of the twenty-first conference on uncertainty in artificial intelligence. Edinburgh, Scotland.
-
-
-
-
30
-
-
77954956779
-
-
Sondik, E. J. (1971). The optimal control of partially observable Markov processes. PhD thesis. Stanford University.
-
-
-
-
31
-
-
31144472319
-
Perseus: Randomized point-based value iteration for POMDPs
-
Spaan M. T. J., Vlassis N. (2005) Perseus: Randomized point-based value iteration for POMDPs. Journal of AI Research 24: 195-220.
-
(2005)
Journal of AI Research
, vol.24
, pp. 195-220
-
-
Spaan, M.T.J.1
Vlassis, N.2
-
33
-
-
33646423007
-
-
Szer, D., & Charpillet, F. (2005). An optimal best-first search algorithm for solving infinite horizon DEC-POMDPs. In: Proceedings of the sixteenth European conference on machine learning. (pp. 389-399). Porto, Portugal.
-
-
-
-
34
-
-
85131709787
-
-
Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for solving decentralized POMDPs. In: Proceedings of the twenty-first conference on uncertainty in artificial intelligence. (pp. 576-583). Edinburgh, Scotland.
-
-
-
-
35
-
-
33646171746
-
-
Wah, B. W., & Chen, Y. (2005). Solving large-scale nonlinear programming problems by constraint partitioning. In: Proceedings of the eleventh international conference on principles and practice of constraint programming. (pp. 697-711).
-
-
-
|