메뉴 건너뛰기




Volumn 6, Issue 9, 2012, Pages 829-838

Automatic feature extraction using generalised autoregressive conditional heteroscedasticity model: An application to electroencephalogram classification

Author keywords

[No Author keywords available]

Indexed keywords

ELECTROENCEPHALOGRAPHY; FEATURE EXTRACTION; IMAGE SEGMENTATION; MARKOV PROCESSES; NEUROLOGY; SIGNAL PROCESSING; STATISTICAL METHODS; WAVELET TRANSFORMS;

EID: 84879998904     PISSN: 17519675     EISSN: 17519683     Source Type: Journal    
DOI: 10.1049/iet-spr.2011.0338     Document Type: Article
Times cited : (13)

References (30)
  • 1
    • 10444275083 scopus 로고    scopus 로고
    • Multi-method synthesizing to detect and classify epileptic waves in EEG'
    • Computer and Inf-ormation Technology
    • Wan, B., Dhakal, B., Qi, H., Zhu, X.: 'Multi-method synthesizing to detect and classify epileptic waves in EEG'. Proc. Fourth IEEE Int. Conf. Computer and Inf-ormation Technology, 2004
    • (2004) Proc. Fourth IEEE Int. Conf
    • Wan, B.1    Dhakal, B.2    Qi, H.3    Zhu, X.4
  • 2
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform'
    • Adeli, H., Zhou, Z., Dadmehr, N.: 'Analysis of EEG records in an epileptic patient using wavelet transform', J. Neurosci. Methods, 2003, 123, pp. 69-87
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 3
    • 78650801088 scopus 로고    scopus 로고
    • Multiparametric detection of epileptic seizures using empirical mode decomposition of EEG records'
    • Orosco, L., Garces Correa, A., Laciar, E.: 'Multiparametric detection of epileptic seizures using empirical mode decomposition of EEG records'. Proc. 32nd Annual Int. Conf. IEEE EMBS, 2010
    • (2010) Proc. 32nd Annual Int. Conf. IEEE EMBS
    • Orosco, L.1    Garces Correa, A.2    Laciar, E.3
  • 4
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification'
    • Uü beyli, E.D.: 'Combined neural network model employing wavelet coefficients for EEG signals classification', Digit. Signal Process., 2009a, 19, pp. 297-308
    • (2009) Digit. Signal Process. , vol.19 , pp. 297-308
    • Uübeyli, E.D.1
  • 5
    • 68349114998 scopus 로고    scopus 로고
    • Fuzzy support vector machine for classification of EEG signals using wavelet-based features'
    • Xu, Q., Zhou, H., Wang, Y., Huang, J.: 'Fuzzy support vector machine for classification of EEG signals using wavelet-based features', Mach. Eng. Phys., 2009, 31, pp. 858-865
    • (2009) Mach. Eng. Phys. , vol.31 , pp. 858-865
    • Xu, Q.1    Zhou, H.2    Wang, Y.3    Huang, J.4
  • 6
    • 70349473120 scopus 로고    scopus 로고
    • EMG signals denoising via Baysian wavelet shrinkage based on GARCH modeling'
    • Amirmazlaghani, M., Amindavar, H.: 'EMG signals denoising via Baysian wavelet shrinkage based on GARCH modeling'. IEEE Conf. ICASSP, 2009
    • (2009) IEEE Conf. ICASSP
    • Amirmazlaghani, M.1    Amindavar, H.2
  • 7
    • 56349101801 scopus 로고    scopus 로고
    • Automatic the detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy'
    • Ocak, H.: 'Automatic the detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy', Expert Syst. Appl., 2009, 36, pp. 2027-2036
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 8
    • 0141813390 scopus 로고    scopus 로고
    • Detection of newborns EEG seizure using optimal features based on discrete wavelet transform'
    • Acoustics Speech and Signal Processing
    • Zarjam, P., Mesbah, M., Boashash, B.: 'Detection of newborns EEG seizure using optimal features based on discrete wavelet transform'. Proc. Fourth IEEE Int. Conf. Acoustics Speech and Signal Processing, 2003, vol. 2, pp. 265-268
    • (2003) Proc. Fourth IEEE Int. Conf. , vol.2 , pp. 265-268
    • Zarjam, P.1    Mesbah, M.2    Boashash, B.3
  • 9
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model'
    • Subasi, A.: 'EEG signal classification using wavelet feature extraction and a mixture of expert model', Expert Syst. Appl., 2007, 32, pp. 1084-1093
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 11
    • 67649601026 scopus 로고    scopus 로고
    • Statistics over features: EEG signals analysis'
    • Uübeyli, E.D.: 'Statistics over features: EEG signals analysis', Comput. Biol. Med., 2009b, 39, pp. 733-741
    • (2009) Comput. Biol. Med. , vol.39 , pp. 733-741
    • Uübeyli, E.D.1
  • 13
    • 42449156579 scopus 로고
    • Generalized autoregressive condition heteroscedasticiy'
    • Bollerslev, T.: 'Generalized autoregressive condition heteroscedasticiy', J. Econ., 1986, 31, pp. 307-327
    • (1986) J. Econ. , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 14
    • 33748941098 scopus 로고    scopus 로고
    • Modelling non-stationary variance in EEG time series by state space GARCH model'
    • Kevin Wonga, K.F., Galkab, A., Yamashitad, O., Ozaki, T.: 'Modelling non-stationary variance in EEG time series by state space GARCH model', Comput. Biol. Med., 2006, 36, pp. 1327-1335
    • (2006) Comput. Biol. Med. , vol.36 , pp. 1327-1335
    • Kevin Wonga, K.F.1    Galkab, A.2    Yamashitad, O.3    Ozaki, T.4
  • 16
    • 79955444979 scopus 로고    scopus 로고
    • The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data'
    • Cheng, Q., Zhou, H., Cheng, J.: 'The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data', IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, pp. 1217-1233
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1217-1233
    • Cheng, Q.1    Zhou, H.2    Cheng, J.3
  • 18
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the K-means clustering and a multilayer perceptron neural network model'
    • Orhan, U., Hekim, M., Ozer, M.: 'EEG signals classification using the K-means clustering and a multilayer perceptron neural network model', Expert Syst. Appl. J., 2011, 38, pp. 13475-13481
    • (2011) Expert Syst. Appl. J. , vol.38 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 19
    • 79551536290 scopus 로고    scopus 로고
    • Spectral estimation of nonstationary EEG using particle filtering with application to event-related desynchronization (ERD)'
    • Ming Ting, C., Salleh, S.H.-H., Zainuddin, Z.M., Bahar, A.: 'Spectral estimation of nonstationary EEG using particle filtering with application to event-related desynchronization (ERD)', IEEE Trans. Biomed. Eng., 2011, 58, pp. 321-331
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , pp. 321-331
    • Ming Ting, C.1    Salleh, S.H.H.2    Zainuddin, Z.M.3    Bahar, A.4
  • 20
    • 0031170893 scopus 로고    scopus 로고
    • Adaptive autoregressive modeling used for single-trial EEG classification'
    • Schloügl, A., Flotzinger, D., Pfurtscheller, G.: 'Adaptive autoregressive modeling used for single-trial EEG classification', Biomed. Tech., 1997, 42, pp. 162-167
    • (1997) Biomed. Tech. , vol.42 , pp. 162-167
    • Schloügl, A.1    Flotzinger, D.2    Pfurtscheller, G.3
  • 21
    • 0000051984 scopus 로고
    • Autoregressive condition heteroscedasticiy with estimate of the variance of U.K. inflation'
    • Engle, R.F.: 'Autoregressive condition heteroscedasticiy with estimate of the variance of U.K. inflation', Econometica, 1982, 50, pp. 987-1008
    • (1982) Econometica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 22
    • 77953872095 scopus 로고    scopus 로고
    • Two novel Bayesian multiscale approaches for speckle suppression in SAR images'
    • Amirmazlaghani, M., Amindavar, H.: 'Two novel Bayesian multiscale approaches for speckle suppression in SAR images', IEEE Trans. Geosci. Remote Sens., 2010, 48, pp. 2980-2993
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2980-2993
    • Amirmazlaghani, M.1    Amindavar, H.2
  • 23
    • 51449101200 scopus 로고    scopus 로고
    • Blind detection of the number of communication signals under spatially correlated noise by ICA and K-S test'
    • ICASSP
    • Choqueuse, V., Yao, K., Collin, L., Burel, G.: 'Blind detection of the number of communication signals under spatially correlated noise by ICA and K-S test'. IEEE Conf. ICASSP, 2008
    • (2008) IEEE Conf.
    • Choqueuse, V.1    Yao, K.2    Collin, L.3    Burel, G.4
  • 24
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear detection and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state'
    • Andrzejak, R., Lehnertz, G.K., Mormann, F., Rieke, C., David, P., Elger, C.E.: 'Indications of nonlinear detection and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state', Phys. Rev. E, 2001, 64, (6), p. 061907
    • (2001) Phys. Rev. E , vol.64 , Issue.6 , pp. 061907
    • Andrzejak, R.1    Lehnertz, G.K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 25
    • 84880003688 scopus 로고    scopus 로고
    • Institute of Medical Biometry, Information and Epidemiology of the 'Medizinische Einrichtungen der Universitaüt Bonn', Available at
    • Institute of Medical Biometry, Information and Epidemiology of the 'Medizinische Einrichtungen der Universitaüt Bonn', Available at http://www.meb.uni-bonn.de/epileptology/science/physik/eeg.data.html
  • 26
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series predication'
    • Soltani, S.: 'On the use of the wavelet decomposition for time series predication', Neurocomputing, 2002, 48, pp. 267-277
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 27
    • 33646515970 scopus 로고    scopus 로고
    • Text categorization with class-based and corpus-based keyword selection'
    • ISCIC Conf
    • Oüzguür, A., Oüzguür, L., Guüngoür, T.: 'Text categorization with class-based and corpus-based keyword selection'. ISCIC Conf., 2005, pp. 606-615
    • (2005) , pp. 606-615
    • Oüzguür, A.1    Oüzguür, L.2    Guüngoür, T.3
  • 28
    • 79955532338 scopus 로고    scopus 로고
    • Classification of mental task from EEG signals using immune feature weighted support vector machines'
    • Guo, L., Wu, Y., Zhao, L., Cao, T., Yan,W., Shen, X.: 'Classification of mental task from EEG signals using immune feature weighted support vector machines', IEEE Trans. Magn., 2011, 47, pp. 866-869
    • (2011) IEEE Trans. Magn. , vol.47 , pp. 866-869
    • Guo, L.1    Wu, Y.2    Zhao, L.3    Cao, T.4    Yan, W.5    Shen, X.6
  • 29
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features'
    • Srinivasan, V., Eswaran, C., Sriraam, N.: 'Artificial neural network based epileptic detection using time-domain and frequency-domain features', J. Med. Syst., 2005, 29, pp. 647-660
    • (2005) J. Med. Syst. , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.