메뉴 건너뛰기




Volumn 58, Issue 2, 2011, Pages 321-331

Spectral estimation of nonstationary EEG using particle filtering with application to event-related desynchronization (ERD)

Author keywords

Event related desynchronization (ERD); particle filters (PF); time varying autoregressive (TVAR) models

Indexed keywords

ABRUPT CHANGE; ALPHA RHYTHM; AR PARAMETER; AUTOREGRESSIVE PARAMETERS; EVENT RELATED DESYNCHRONIZATION; GAUSSIAN MODEL; GAUSSIAN STATE; HEAVY-TAILED DISTRIBUTION; KALMAN-FILTERING; MONTE CARLO PARTICLES; NON-GAUSSIAN MODELS; NON-GAUSSIAN NOISE; NON-GAUSSIAN STATE; NONSTATIONARY; PARAMETER VARIATION; PARTICLE FILTERING; PARTICLE FILTERS (PF); SPECTRAL ESTIMATE; SPECTRAL ESTIMATION; SPECTRAL REPRESENTATIONS; STATE-SPACE MODELS; TIME VARYING; TIME-VARYING AUTOREGRESSIVE; TIME-VARYING AUTOREGRESSIVE (TVAR) MODELS; TRACKING PERFORMANCE;

EID: 79551536290     PISSN: 00189294     EISSN: None     Source Type: Journal    
DOI: 10.1109/TBME.2010.2088396     Document Type: Article
Times cited : (33)

References (32)
  • 1
    • 0031170893 scopus 로고    scopus 로고
    • Adaptive autoregressive modeling used for single-trial EEG classification
    • A. Schlögl, D. Flotzinger, and G. Pfurtscheller, "Adaptive autoregressive modeling used for single-trial EEG classification," Biomed. Technik, vol. 42, pp. 162-167, 1997.
    • (1997) Biomed. Technik , vol.42 , pp. 162-167
    • Schlögl, A.1    Flotzinger, D.2    Pfurtscheller, G.3
  • 2
    • 33748196403 scopus 로고    scopus 로고
    • Adaptive AR modeling of nonstationary time series by means of Kalman filtering
    • May
    • M. Arnold,W. H. R. Miltner, H.Witte, R. Bauer, and C. Braun, "Adaptive AR modeling of nonstationary time series by means of Kalman filtering," IEEE Trans. Biomed. Eng., vol. 45, no. 5, pp. 553-562, May 1998.
    • (1998) IEEE Trans. Biomed. Eng. , vol.45 , Issue.5 , pp. 553-562
    • Arnold, M.1    Miltner, W.H.R.2    Witte, H.3    Bauer, R.4    Braun, C.5
  • 3
    • 32144464405 scopus 로고    scopus 로고
    • Time-varying analysis of heart rate variability signals with Kalman smoother algorithm
    • M. P. Tarvainen, S. D. Georgiadis, P. O. Ranta-aho, and P. A. Karjalainen, "Time-varying analysis of heart rate variability signals with Kalman smoother algorithm," Physiol. Meas., vol. 27, pp. 225-239, 2006.
    • (2006) Physiol. Meas. , vol.27 , pp. 225-239
    • Tarvainen, M.P.1    Georgiadis, S.D.2    Ranta-Aho, P.O.3    Karjalainen, P.A.4
  • 4
    • 0026189154 scopus 로고
    • Study of cardiac arrhythmia using the Kalman filter
    • M. S. Woolfson, "Study of cardiac arrhythmia using the Kalman filter," Med. Biol. Eng. Comput., vol. 29, no. 4, pp. 398-405, 1991.
    • (1991) Med. Biol. Eng. Comput. , vol.29 , Issue.4 , pp. 398-405
    • Woolfson, M.S.1
  • 5
    • 23844483701 scopus 로고    scopus 로고
    • Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering
    • Aug.
    • M. Aboy, O. W. Marquez, J. McNames, R. Hornero, T. Tron, and B. Goldstein, "Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering," IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1485-1489, Aug. 2005.
    • (2005) IEEE Trans. Biomed. Eng. , vol.52 , Issue.8 , pp. 1485-1489
    • Aboy, M.1    Marquez, O.W.2    McNames, J.3    Hornero, R.4    Tron, T.5    Goldstein, B.6
  • 6
    • 34250756972 scopus 로고    scopus 로고
    • An expectation-maximization algorithm based Kalman smoother approach for event-related desynchronization (ERD) estimation from EEG
    • Jul.
    • M. E. Khan and D. N. Dutt, "An expectation-maximization algorithm based Kalman smoother approach for event-related desynchronization (ERD) estimation from EEG," IEEE Trans. Biomed. Eng., vol. 52, no. 7, pp. 1191-1198, Jul. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.52 , Issue.7 , pp. 1191-1198
    • Khan, M.E.1    Dutt, D.N.2
  • 7
    • 1242276311 scopus 로고    scopus 로고
    • Estimation of nonstationary EEG with Kalman smoother approach: An application to event-related synchronization (ERS)
    • Mar.
    • M. P. Tarvainen, J. K. Hiltunen, P. O. Ranta-aho, and P. A. Karjalainen, "Estimation of nonstationary EEG with Kalman smoother approach: An application to event-related synchronization (ERS)," IEEE Trans. Biomed. Eng., vol. 51, no. 3, pp. 516-524, Mar. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.3 , pp. 516-524
    • Tarvainen, M.P.1    Hiltunen, J.K.2    Ranta-Aho, P.O.3    Karjalainen, P.A.4
  • 8
    • 0036785214 scopus 로고    scopus 로고
    • Bayesian nonstationary autoregressive models for biomedical signal analysis
    • Oct.
    • M. J. Cassidy and W. D. Penny, "Bayesian nonstationary autoregressive models for biomedical signal analysis," IEEE Trans. Biomed. Eng., vol. 49, no. 10, pp. 1142-1152, Oct. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.49 , Issue.10 , pp. 1142-1152
    • Cassidy, M.J.1    Penny, W.D.2
  • 9
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • G. Kitagawa, "Non-Gaussian state-space modeling of nonstationary time series," J. Amer. Statistical Assoc., vol. 82, no. 400, pp. 1032-1041, 1987.
    • (1987) J. Amer. Statistical Assoc. , vol.82 , Issue.400 , pp. 1032-1041
    • Kitagawa, G.1
  • 11
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximation
    • Aug.
    • D. L. Aspach and H. W. Sorenson, "Nonlinear Bayesian estimation using Gaussian sum approximation," IEEE Trans. Automat. Contr., vol. 17, no. 4, pp. 439-448, Aug. 1972.
    • (1972) IEEE Trans. Automat. Contr. , vol.17 , Issue.4 , pp. 439-448
    • Aspach, D.L.1    Sorenson, H.W.2
  • 12
    • 0001460136 scopus 로고    scopus 로고
    • On sequential monte carlo sampling methods for bayesian filtering
    • A. Doucet, S. J. Godsill, and C. Andrieu, "On sequential monte carlo sampling methods for bayesian filtering," Stat. Comput., vol. 10, no. 3, pp. 197-208, 2000.
    • (2000) Stat. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 13
    • 44649107771 scopus 로고    scopus 로고
    • An overview of existing methods and recent advances in sequential Monte Carlo
    • May
    • O. Cappe, S. J. Godsill, and E. Moulines, "An overview of existing methods and recent advances in sequential Monte Carlo," Proc. IEEE, vol. 95, no. 5, pp. 899-924, May 2007.
    • (2007) Proc. IEEE , vol.95 , Issue.5 , pp. 899-924
    • Cappe, O.1    Godsill, S.J.2    Moulines, E.3
  • 14
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • Oxford, U.K: Oxford Univ. Press
    • A. Doucet and A. M. Johansen, "A tutorial on particle filtering and smoothing: Fifteen years later," in Handbook of Nonlinear Filtering.. Oxford, U.K: Oxford Univ. Press, 2008.
    • (2008) Handbook of Nonlinear Filtering.
    • Doucet, A.1    Johansen, A.M.2
  • 15
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Apr.
    • N. Gordon, D. Salmond, and A. F. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," IEE Proc. F. Radar Signal Process., vol. 140, no. 2, pp. 107-113, Apr. 1993.
    • (1993) IEE Proc. F. Radar Signal Process. , vol.140 , Issue.2 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.F.3
  • 16
    • 0030304310 scopus 로고    scopus 로고
    • MonteCarlo filter and smoother for non-Gaussian nonlinear state space models
    • G. Kitagawa, "MonteCarlo filter and smoother for non-Gaussian nonlinear state space models," J. Amer. Statistical Assoc., vol. 5, no. 1, pp. 1-25, 1996.
    • (1996) J. Amer. Statistical Assoc. , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 17
    • 0001534675 scopus 로고    scopus 로고
    • Nonlinear filtering: Interacting particle solution
    • P. D. Moral, "Nonlinear filtering: Interacting particle solution," Markov Process. Relat. Fields, vol. 2, pp. 555-579, 1996.
    • (1996) Markov Process. Relat. Fields , vol.2 , pp. 555-579
    • Moral, P.D.1
  • 19
    • 70350463549 scopus 로고    scopus 로고
    • The application of particle filters in single trial event-related potential estimation
    • H. R. Mohseni, K. Nazarpour, E. L. Wilding, and S. Sanei, "The application of particle filters in single trial event-related potential estimation," Physiol. Meas., vol. 30, pp. 1101-1116, 2009.
    • (2009) Physiol. Meas. , vol.30 , pp. 1101-1116
    • Mohseni, H.R.1    Nazarpour, K.2    Wilding, E.L.3    Sanei, S.4
  • 20
    • 0041520552 scopus 로고    scopus 로고
    • Sequential parameter estimation of time-varying non-Gaussian autoregressive processes
    • P. Djuric, J. H. Kotecha, F. Esteve, and E. Perret, "Sequential parameter estimation of time-varying non-Gaussian autoregressive processes," EURASIP J. Appl. Signal Process., vol. 2002, pp. 865-875, 2002.
    • (2002) EURASIP J. Appl. Signal Process. , vol.2002 , pp. 865-875
    • Djuric, P.1    Kotecha, J.H.2    Esteve, F.3    Perret, E.4
  • 21
    • 77951294377 scopus 로고    scopus 로고
    • Modeling non-Gaussian time-varying vector autoregressive processes by particle filtering
    • D. Gencaga, E. E. Kuruoglu, and A. Ertuzun, "Modeling non-Gaussian time-varying vector autoregressive processes by particle filtering," Multidim. Syst. Sign. Process., vol. 21, pp. 73-85, 2010.
    • (2010) Multidim. Syst. Sign. Process. , vol.21 , pp. 73-85
    • Gencaga, D.1    Kuruoglu, E.E.2    Ertuzun, A.3
  • 22
    • 0032347276 scopus 로고    scopus 로고
    • Self organizing state-space model
    • G. Kitagawa, "Self organizing state-space model," J. Amer. Statistical Assoc., vol. 93, no. 443, pp. 1203-1215, 1998.
    • (1998) J. Amer. Statistical Assoc. , vol.93 , Issue.443 , pp. 1203-1215
    • Kitagawa, G.1
  • 23
    • 12244255598 scopus 로고    scopus 로고
    • Self organizing time series model
    • A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Ed. New York: Springer-Verlag
    • T. Higuchi, "Self organizing time series model," in SequentialMonteCarlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Ed. New York: Springer-Verlag, 2001, pp. 429-444.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 429-444
    • Higuchi, T.1
  • 24
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation based filtering
    • A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Ed. New York: Springer- Verlag
    • J. Liu and M.West, "Combined parameter and state estimation in simulation based filtering," in Sequential Monte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Ed. New York: Springer- Verlag, 2001, pp. 196-223.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 196-223
    • Liu, J.1    West, M.2
  • 28
    • 0028853235 scopus 로고
    • Evaluation of parametric methods in EEG signal analysis
    • S. Y. Tseng, R. C. Chen, F. C. Chong, and T. S. Kuo, "Evaluation of parametric methods in EEG signal analysis," Med. Eng. Phys., vol. 17, pp. 71-78, 1995.
    • (1995) Med. Eng. Phys. , vol.17 , pp. 71-78
    • Tseng, S.Y.1    Chen, R.C.2    Chong, F.C.3    Kuo, T.S.4
  • 29
    • 2142848605 scopus 로고    scopus 로고
    • Monte Carlo smoothing for nonlinear time series
    • S. J. Godsill, A. Doucet, andM.West, "Monte Carlo smoothing for nonlinear time series," J. Amer. Statistical Assoc., vol. 99, no. 465, pp. 156-168, 2004.
    • (2004) J. Amer. Statistical Assoc. , vol.99 , Issue.465 , pp. 156-168
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 30
    • 0035485788 scopus 로고    scopus 로고
    • A high-resolution quadratic time-frequency distribution for multicomponent signals analysis
    • Oct.
    • B. Barkat and B. Boashash, "A high-resolution quadratic time-frequency distribution for multicomponent signals analysis," IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2232-2239, Oct. 2001.
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.10 , pp. 2232-2239
    • Barkat, B.1    Boashash, B.2
  • 31
    • 0032829330 scopus 로고    scopus 로고
    • Event-related EEG/EMG synchronization and desynchronization: Basic principles
    • G. Pfurtscheller and F. H. L. d. Silva, "Event-related EEG/EMG synchronization and desynchronization: Basic principles," Clinical Neurophysiol., vol. 110, pp. 1842-1857, 1999.
    • (1999) Clinical Neurophysiol. , vol.110 , pp. 1842-1857
    • Pfurtscheller, G.1    Silva, F.H.L.D.2
  • 32
    • 0036508204 scopus 로고    scopus 로고
    • Particle methods for Bayesian modeling and enhancement of speech signals
    • Mar.
    • J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, "Particle methods for Bayesian modeling and enhancement of speech signals," IEEE Trans. Speech Audio Process., vol. 10, no. 3, pp. 173-185, Mar. 2002.
    • (2002) IEEE Trans. Speech Audio Process. , vol.10 , Issue.3 , pp. 173-185
    • Vermaak, J.1    Andrieu, C.2    Doucet, A.3    Godsill, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.