메뉴 건너뛰기




Volumn 23, Issue 1, 2013, Pages 175-185

An ε-twin support vector machine for regression

Author keywords

Machine learning; Regression; Successive overrelaxation; Support vector machines; Twin support vector machine

Indexed keywords

EMPIRICAL RISK MINIMIZATION; GENERALIZATION PERFORMANCE; QUADRATIC PROGRAMMING PROBLEMS; REGRESSION; STRUCTURAL RISK MINIMIZATION PRINCIPLE; SUCCESSIVE OVER RELAXATION; SUPPORT VECTOR REGRESSION (SVR); TWIN SUPPORT VECTOR MACHINES;

EID: 84879845371     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-0924-3     Document Type: Article
Times cited : (132)

References (39)
  • 1
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20: 273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2: 121-167.
    • (1998) Data Min Knowl Discov , vol.2 , pp. 121-167
    • Burges, C.1
  • 5
    • 1542559402 scopus 로고    scopus 로고
    • Support vector machine applications in computational biology
    • In: Schöelkopf B, Tsuda K, Vert J-P (eds), MIT Press, Cambridge
    • Noble WS (2004) Support vector machine applications in computational biology. In: Schöelkopf B, Tsuda K, Vert J-P (eds) Kernel methods in computational biology. MIT Press, Cambridge, pp 71-92.
    • (2004) Kernel methods in computational biology , pp. 71-92
    • Noble, W.S.1
  • 6
    • 2442447786 scopus 로고    scopus 로고
    • Pattern recognition with support vector machines
    • Springer, Niagara Falls, Canada
    • Lee S, Verri A (2002) Pattern recognition with support vector machines. In: First international workshop, Springer, Niagara Falls, Canada.
    • (2002) In: First international workshop
    • Lee, S.1    Verri, A.2
  • 7
    • 79958782942 scopus 로고    scopus 로고
    • Support vector machine for regression and applications to financial forecasting
    • Como, Italy, IEEE-INNS-ENNS
    • Ince H, Trafalis TB (2002) Support vector machine for regression and applications to financial forecasting. In: International joint conference on neural networks, Como, Italy, IEEE-INNS-ENNS.
    • (2002) International joint conference on neural networks
    • Ince, H.1    Trafalis, T.B.2
  • 9
    • 33644830072 scopus 로고    scopus 로고
    • Multisurface proximal support vector classification via generalize deigenvalues
    • Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalize deigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1): 69-74.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , Issue.1 , pp. 69-74
    • Mangasarian, O.L.1    Wild, E.W.2
  • 11
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29(13): 1842-1848.
    • (2008) Pattern Recognt Lett , vol.29 , Issue.13 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 12
    • 84878560977 scopus 로고    scopus 로고
    • A novel margin based twin support vector machine with unity norm hyperplanes
    • doi: 10. 1007/s00521-012-0894-5
    • Shao YH, Deng NY (2012) A novel margin based twin support vector machine with unity norm hyperplanes. Neural Comput Appl. doi: 10. 1007/s00521-012-0894-5.
    • (2012) Neural Comput Appl
    • Shao, Y.H.1    Deng, N.Y.2
  • 13
    • 60249095678 scopus 로고    scopus 로고
    • Least squares twin support vector machines for pattern classification
    • Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4): 7535-7543.
    • (2009) Expert Syst Appl , vol.36 , Issue.4 , pp. 7535-7543
    • Kumar, M.A.1    Gopal, M.2
  • 14
    • 57749189368 scopus 로고    scopus 로고
    • Nonparallel plane proximal classifier
    • Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89(4): 510-522.
    • (2009) Signal Process , vol.89 , Issue.4 , pp. 510-522
    • Ghorai, S.1    Mukherjee, A.2    Dutta, P.K.3
  • 16
    • 82355169634 scopus 로고    scopus 로고
    • A coordinate descent margin based-twin support vector machine for classification
    • Shao YH, Deng NY (2012) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25: 114-121.
    • (2012) Neural Netw , vol.25 , pp. 114-121
    • Shao, Y.H.1    Deng, N.Y.2
  • 17
    • 79958843215 scopus 로고    scopus 로고
    • TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition
    • Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10-11): 2678-2692.
    • (2011) Pattern Recognit , vol.44 , Issue.10-11 , pp. 2678-2692
    • Peng, X.1
  • 18
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293-300.
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 19
    • 76849100708 scopus 로고    scopus 로고
    • TSVR: an efficient twin support vector machine for regression
    • Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3): 365-372.
    • (2010) Neural Netw , vol.23 , Issue.3 , pp. 365-372
    • Peng, X.1
  • 20
    • 84857646348 scopus 로고    scopus 로고
    • Training twin support vector regression via linear programming
    • doi: 10. 1007/s 00521-011-0526-6
    • Zhong P, Xu Y, Zhao Y (2011) Training twin support vector regression via linear programming. Neural Comput Appl. doi: 10. 1007/s 00521-011-0526-6.
    • (2011) Neural Comput Appl
    • Zhong, P.1    Xu, Y.2    Zhao, Y.3
  • 21
    • 84858159769 scopus 로고    scopus 로고
    • Smooth twin support vector regression
    • doi: 10. 1007/s00521-010-0454-9
    • Chen X, Yang J, Liang J, Ye Q (2011) Smooth twin support vector regression. Neural Comput Appl. doi: 10. 1007/s00521-010-0454-9.
    • (2011) Neural Comput Appl.
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 22
    • 78649962833 scopus 로고    scopus 로고
    • Primal twin support vector regression and its sparse approximation
    • Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16-18): 2846-2858.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 2846-2858
    • Peng, X.1
  • 23
    • 83955162266 scopus 로고    scopus 로고
    • Efficient twin parametric insensitive support vector regression model
    • Peng X (2012) Efficient twin parametric insensitive support vector regression model. Neurocomputing 79: 26-38.
    • (2012) Neurocomputing , vol.79 , pp. 26-38
    • Peng, X.1
  • 24
    • 84867703105 scopus 로고    scopus 로고
    • A flexible support vector machine for regression
    • doi: 10. 1007/s00521-011-0623-5
    • Chen X, Yang J, Liang J (2011) A flexible support vector machine for regression. Neural Comput Appl. doi: 10. 1007/s00521-011-0623-5.
    • (2011) Neural Comput Appl.
    • Chen, X.1    Yang, J.2    Liang, J.3
  • 26
    • 0242288816 scopus 로고    scopus 로고
    • A geometric approach to support vector regression
    • Bi J, Bennett KP (2003) A geometric approach to support vector regression. Neurocomputing 55: 79-108.
    • (2003) Neurocomputing , vol.55 , pp. 79-108
    • Bi, J.1    Bennett, K.P.2
  • 27
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14: 199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 28
  • 30
    • 0032594961 scopus 로고    scopus 로고
    • Successive overrelaxation for support vector machines
    • Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5): 1032-1037.
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 1032-1037
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 31
    • 84879836676 scopus 로고    scopus 로고
    • http://www. mathworks. com (2007).
    • (2007)
  • 37
    • 33745834241 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake CL, Merz CJ (1998) UCI repository for machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, http://www. ics. uci. edu/mlearn/MLRepository. html.
    • (1998) UCI repository for machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 38
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18: 1-13.
    • (2007) IEEE Trans Neural Netw , vol.18 , pp. 1-13
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 39
    • 56549109169 scopus 로고    scopus 로고
    • A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression
    • Wen W, Hao Z, Yang X (2008) A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression. Neurocomputing 71: 3096-3103.
    • (2008) Neurocomputing , vol.71 , pp. 3096-3103
    • Wen, W.1    Hao, Z.2    Yang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.