메뉴 건너뛰기




Volumn 227, Issue , 2013, Pages 13-21

In situ monitoring of microfluidic distillation

Author keywords

Microchannel distillation; Microscale separation; Raman spectroscopy

Indexed keywords

CONCENTRATION PROFILES; DESIGN AND OPERATIONS; HEATING AND COOLING; IN- SITU MONITORING; IN-SITU RAMAN SPECTROSCOPY; INFRARED IMAGING CAMERAS; OPERATING CONDITION; SERPENTINE MICROCHANNELS;

EID: 84879840002     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2012.11.125     Document Type: Article
Times cited : (18)

References (47)
  • 2
    • 15944367401 scopus 로고    scopus 로고
    • The application of micro reactors for organic synthesis
    • Watts P., Haswell S.J. The application of micro reactors for organic synthesis. Chem. Soc. Rev. 2005, 34:235-246.
    • (2005) Chem. Soc. Rev. , vol.34 , pp. 235-246
    • Watts, P.1    Haswell, S.J.2
  • 3
    • 74549122023 scopus 로고    scopus 로고
    • Process intensification through microreactor application
    • Pohar A., Plazl I. Process intensification through microreactor application. Chem. Biochem. Eng. Q. 2009, 23:537-544.
    • (2009) Chem. Biochem. Eng. Q. , vol.23 , pp. 537-544
    • Pohar, A.1    Plazl, I.2
  • 5
    • 23944463423 scopus 로고    scopus 로고
    • High flux heat removal with microchannels - a roadmap of challenges and opportunities
    • Kandlikar S.G. High flux heat removal with microchannels - a roadmap of challenges and opportunities. Heat Trans. Eng. 2005, 26:5-14.
    • (2005) Heat Trans. Eng. , vol.26 , pp. 5-14
    • Kandlikar, S.G.1
  • 6
    • 9644288021 scopus 로고    scopus 로고
    • Design and operation of micro-chemical plants - bridging the gap between nano, micro and macro technologies
    • Hasebe S. Design and operation of micro-chemical plants - bridging the gap between nano, micro and macro technologies. Comput. Chem. Eng. 2004, 29:57-64.
    • (2004) Comput. Chem. Eng. , vol.29 , pp. 57-64
    • Hasebe, S.1
  • 7
    • 77949569535 scopus 로고    scopus 로고
    • Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering
    • Charpentier J.-C. Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chem. Eng. Res. Des. 2010, 88:248-254.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 248-254
    • Charpentier, J.-C.1
  • 8
    • 78751524074 scopus 로고    scopus 로고
    • "Separation Units"
    • T. Dietrich (Ed.), Microchemical Engineering in Practice, Wiley, Hoboken. (Chapter 6)
    • A. Gavriilidis, J.E.A. Shaw, "Separation Units", in: T. Dietrich (Ed.), Microchemical Engineering in Practice, Wiley, Hoboken, 2009, pp. 131-164. (Chapter 6).
    • (2009) , pp. 131-164
    • Gavriilidis, A.1    Shaw, J.E.A.2
  • 9
    • 1342302939 scopus 로고    scopus 로고
    • Continuous laminar evaporation: micron-scale distillation
    • Wootton R.C.R., deMello A.J. Continuous laminar evaporation: micron-scale distillation. Chem. Commun. 2004, 266-267.
    • (2004) Chem. Commun. , pp. 266-267
    • Wootton, R.C.R.1    deMello, A.J.2
  • 10
    • 67649989420 scopus 로고    scopus 로고
    • Distillation in microchemical systems using capillary forces and segmented flow
    • Hartman R.L., Sahoo H.R., Yen B.C., Jensen K.F. Distillation in microchemical systems using capillary forces and segmented flow. Lab Chip 2009, 9:1843-1849.
    • (2009) Lab Chip , vol.9 , pp. 1843-1849
    • Hartman, R.L.1    Sahoo, H.R.2    Yen, B.C.3    Jensen, K.F.4
  • 13
    • 77951122605 scopus 로고    scopus 로고
    • Experimental investigation on a membrane distillation based micro-separator
    • Adiche C., Sundmacher K. Experimental investigation on a membrane distillation based micro-separator. Chem. Eng. Process. 2010, 49:425-434.
    • (2010) Chem. Eng. Process. , vol.49 , pp. 425-434
    • Adiche, C.1    Sundmacher, K.2
  • 14
    • 65549165898 scopus 로고    scopus 로고
    • Vacuum membrane distillation on a microfluidic chip
    • Zhang Y., Kato S., Anazawa T. Vacuum membrane distillation on a microfluidic chip. Chem. Commun. 2009, 2750-2752.
    • (2009) Chem. Commun. , pp. 2750-2752
    • Zhang, Y.1    Kato, S.2    Anazawa, T.3
  • 15
    • 77949821670 scopus 로고    scopus 로고
    • Vacuum membrane distillation by microchip with temperature gradient
    • Zhang Y., Kato S., Anazawa T. Vacuum membrane distillation by microchip with temperature gradient. Lab Chip 2010, 10:899-908.
    • (2010) Lab Chip , vol.10 , pp. 899-908
    • Zhang, Y.1    Kato, S.2    Anazawa, T.3
  • 17
    • 58149121528 scopus 로고    scopus 로고
    • Microfluidic distillation utilizing micro-nano combined structure
    • Hibara A., Toshin K., Tsukahara T., Mawatari K., Kitamori T. Microfluidic distillation utilizing micro-nano combined structure. Chem. Lett. 2008, 37:1064-1065.
    • (2008) Chem. Lett. , vol.37 , pp. 1064-1065
    • Hibara, A.1    Toshin, K.2    Tsukahara, T.3    Mawatari, K.4    Kitamori, T.5
  • 18
    • 0022271508 scopus 로고
    • Zero-gravity distillation utilizing the heat pipe principle (micro-distillation)
    • Seok D.R., Hwang S.-T. Zero-gravity distillation utilizing the heat pipe principle (micro-distillation). AIChE J. 1985, 31:2059-2065.
    • (1985) AIChE J. , vol.31 , pp. 2059-2065
    • Seok, D.R.1    Hwang, S.-T.2
  • 19
    • 64649103439 scopus 로고    scopus 로고
    • Novel micro-distillation column for process development
    • Sundberg A., Uusi-Kyyny P., Alopaeus V. Novel micro-distillation column for process development. Chem. Eng. Res. Des. 2009, 87:705-710.
    • (2009) Chem. Eng. Res. Des. , vol.87 , pp. 705-710
    • Sundberg, A.1    Uusi-Kyyny, P.2    Alopaeus, V.3
  • 21
    • 84855182782 scopus 로고    scopus 로고
    • Development of a microrectification apparatus for analytical and preparative applications
    • Ziogas A., Cominos V., Kolb G., Kost H.-J., Werner B., Hessel V. Development of a microrectification apparatus for analytical and preparative applications. Chem. Eng. Technol. 2012, 35:58-71.
    • (2012) Chem. Eng. Technol. , vol.35 , pp. 58-71
    • Ziogas, A.1    Cominos, V.2    Kolb, G.3    Kost, H.-J.4    Werner, B.5    Hessel, V.6
  • 22
    • 79952655920 scopus 로고    scopus 로고
    • Development of multistage distillation in a microfluidic chip
    • Lam K.F., Cao E., Sorensen E., Gavriilidis A. Development of multistage distillation in a microfluidic chip. Lab Chip 2011, 11:1311-1317.
    • (2011) Lab Chip , vol.11 , pp. 1311-1317
    • Lam, K.F.1    Cao, E.2    Sorensen, E.3    Gavriilidis, A.4
  • 23
    • 79953067368 scopus 로고    scopus 로고
    • Towards an understanding of the effects of operating conditions on separation by microfluidic distillation
    • Lam K.F., Sorensen E., Gavriilidis A. Towards an understanding of the effects of operating conditions on separation by microfluidic distillation. Chem. Eng. Sci. 2011, 66:2098-2106.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 2098-2106
    • Lam, K.F.1    Sorensen, E.2    Gavriilidis, A.3
  • 24
    • 34247895633 scopus 로고    scopus 로고
    • Microfluidic pressure sensing using trapped air compression
    • Srivastava N., Burns M.A. Microfluidic pressure sensing using trapped air compression. Lab Chip 2007, 7:633-637.
    • (2007) Lab Chip , vol.7 , pp. 633-637
    • Srivastava, N.1    Burns, M.A.2
  • 25
    • 75149168272 scopus 로고    scopus 로고
    • A microfluidic system with embedded acoustic wave sensor for in situ detection of dynamic fluidic properties
    • Zhang K., Zhao L., Guo S., Shi B., Chen Y., Chen H.L., Wang Y. A microfluidic system with embedded acoustic wave sensor for in situ detection of dynamic fluidic properties. Microelectron. Eng. 2010, 87:658-662.
    • (2010) Microelectron. Eng. , vol.87 , pp. 658-662
    • Zhang, K.1    Zhao, L.2    Guo, S.3    Shi, B.4    Chen, Y.5    Chen, H.L.6    Wang, Y.7
  • 26
    • 79951627250 scopus 로고    scopus 로고
    • Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system
    • McKenzie L.C., Haben P.M., Kevan S.D., Hutchison J.E. Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J. Phys. Chem. C. 2010, 114:22055-22063.
    • (2010) J. Phys. Chem. C. , vol.114 , pp. 22055-22063
    • McKenzie, L.C.1    Haben, P.M.2    Kevan, S.D.3    Hutchison, J.E.4
  • 27
    • 44349171118 scopus 로고    scopus 로고
    • A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles
    • Chastek T.Q., Iida K., Amis E.J., Fasolka M.J., Beers K.L. A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles. Lab Chip 2008, 8:950-957.
    • (2008) Lab Chip , vol.8 , pp. 950-957
    • Chastek, T.Q.1    Iida, K.2    Amis, E.J.3    Fasolka, M.J.4    Beers, K.L.5
  • 29
    • 10944225183 scopus 로고    scopus 로고
    • Recent developments in detection for microfluidic systems
    • Mogensen K.B., Klank H., Kutter J.P. Recent developments in detection for microfluidic systems. Electrophoresis 2004, 25:3498-3512.
    • (2004) Electrophoresis , vol.25 , pp. 3498-3512
    • Mogensen, K.B.1    Klank, H.2    Kutter, J.P.3
  • 30
    • 33845674687 scopus 로고    scopus 로고
    • Recent developments in optical detection methods for microchip separations
    • Gotz S., Karst U. Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem. 2007, 387:183-192.
    • (2007) Anal. Bioanal. Chem. , vol.387 , pp. 183-192
    • Gotz, S.1    Karst, U.2
  • 31
    • 26844459992 scopus 로고    scopus 로고
    • Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium
    • Vollmer A.P., Probstein R.F., Gilbert R., Thorsen T. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab Chip 2005, 5:1059-1066.
    • (2005) Lab Chip , vol.5 , pp. 1059-1066
    • Vollmer, A.P.1    Probstein, R.F.2    Gilbert, R.3    Thorsen, T.4
  • 32
    • 80052278082 scopus 로고    scopus 로고
    • Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film
    • Song D.H., Kim H.D., Kim K.C. Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film. J. Vis. 2011, 14:295-304.
    • (2011) J. Vis. , vol.14 , pp. 295-304
    • Song, D.H.1    Kim, H.D.2    Kim, K.C.3
  • 33
    • 70349306475 scopus 로고    scopus 로고
    • Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices
    • Sung J.H., Choi J.-R., Kim D., Shuler M.L. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices. Biotechnol. Bioeng. 2009, 104:516-525.
    • (2009) Biotechnol. Bioeng. , vol.104 , pp. 516-525
    • Sung, J.H.1    Choi, J.-R.2    Kim, D.3    Shuler, M.L.4
  • 34
    • 35349029906 scopus 로고    scopus 로고
    • Real-time fluorescence detection of multiple microscale cell culture analog devices in situ
    • Oh T.I., Sung J.H., Tatosian D.A., Shuler M.L., Kim D. Real-time fluorescence detection of multiple microscale cell culture analog devices in situ. Cytom. A 2007, 71:857-865.
    • (2007) Cytom. A , vol.71 , pp. 857-865
    • Oh, T.I.1    Sung, J.H.2    Tatosian, D.A.3    Shuler, M.L.4    Kim, D.5
  • 35
    • 77953092068 scopus 로고    scopus 로고
    • Attenuated total reflection Fourier transform infrared spectroscopy for on-chip monitoring of solute concentrations
    • Greener J., Abbasi B., Kumacheva E. Attenuated total reflection Fourier transform infrared spectroscopy for on-chip monitoring of solute concentrations. Lab Chip 2010, 10:1561-1566.
    • (2010) Lab Chip , vol.10 , pp. 1561-1566
    • Greener, J.1    Abbasi, B.2    Kumacheva, E.3
  • 36
    • 33748109177 scopus 로고    scopus 로고
    • Raman spectroscopic monitoring of droplet polymerization in a microfluidic device
    • Barnes S.E., Cygan Z.T., Yates J.K., Beers K.L., Amis E.J. Raman spectroscopic monitoring of droplet polymerization in a microfluidic device. Analyst 2006, 131:1027-1033.
    • (2006) Analyst , vol.131 , pp. 1027-1033
    • Barnes, S.E.1    Cygan, Z.T.2    Yates, J.K.3    Beers, K.L.4    Amis, E.J.5
  • 37
    • 41149112969 scopus 로고    scopus 로고
    • Chemical reaction imaging within microfluidic devices using confocal Raman spectroscopy: the case of water and deuterium oxide as a model system
    • Sarrazin F., Salmon J.-B. Chemical reaction imaging within microfluidic devices using confocal Raman spectroscopy: the case of water and deuterium oxide as a model system. Anal. Chem. 2008, 80:1689-1695.
    • (2008) Anal. Chem. , vol.80 , pp. 1689-1695
    • Sarrazin, F.1    Salmon, J.-B.2
  • 38
    • 37449035054 scopus 로고    scopus 로고
    • In situ confocal-Raman measurement of water and methanol concentration profiles in Nafion membrane under cross-transport conditions
    • Deabate S., Fatnassi R., Sistat P., Huguet P. In situ confocal-Raman measurement of water and methanol concentration profiles in Nafion membrane under cross-transport conditions. J. Power Sources 2008, 176:39-45.
    • (2008) J. Power Sources , vol.176 , pp. 39-45
    • Deabate, S.1    Fatnassi, R.2    Sistat, P.3    Huguet, P.4
  • 39
    • 21044434066 scopus 로고    scopus 로고
    • In situ Raman imaging of interdiffusion in a microchannel
    • 094106
    • Salmon J.B., Ajdari A., Tabeling P. In situ Raman imaging of interdiffusion in a microchannel. Appl. Phys. Lett. 2005, 86(094106):1-3.
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 1-3
    • Salmon, J.B.1    Ajdari, A.2    Tabeling, P.3
  • 41
    • 77954966367 scopus 로고    scopus 로고
    • Non-invasive analysis in micro-reactors using Raman spectrometry with a specially designed probe
    • Mozharov S., Nordon A., Girkin J.M., Littlejohn D. Non-invasive analysis in micro-reactors using Raman spectrometry with a specially designed probe. Lab Chip 2010, 10:2101-2107.
    • (2010) Lab Chip , vol.10 , pp. 2101-2107
    • Mozharov, S.1    Nordon, A.2    Girkin, J.M.3    Littlejohn, D.4
  • 42
    • 79551478320 scopus 로고    scopus 로고
    • In situ Raman spectroscopy to monitor the hydrolysis of acetal in microreactors
    • Rinke G., Ewinger A., Kerschbaum S., Rinke M. In situ Raman spectroscopy to monitor the hydrolysis of acetal in microreactors. Microfluid. Nanofluid 2011, 10:145-153.
    • (2011) Microfluid. Nanofluid , vol.10 , pp. 145-153
    • Rinke, G.1    Ewinger, A.2    Kerschbaum, S.3    Rinke, M.4
  • 44
    • 79952576603 scopus 로고    scopus 로고
    • Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry
    • Mozharov S., Nordon A., Littlejohn D., Wiles C., Watts P., Dallin P., Girkin J.M. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J. Am. Chem. Soc. 2011, 133:3601-3608.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 3601-3608
    • Mozharov, S.1    Nordon, A.2    Littlejohn, D.3    Wiles, C.4    Watts, P.5    Dallin, P.6    Girkin, J.M.7
  • 45
    • 12344279878 scopus 로고    scopus 로고
    • A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection
    • Leung S.-A., Winkle R.F., Wootton R.C.R., deMello A.J. A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. Analyst 2005, 130:46-51.
    • (2005) Analyst , vol.130 , pp. 46-51
    • Leung, S.-A.1    Winkle, R.F.2    Wootton, R.C.R.3    deMello, A.J.4
  • 46
    • 0345603045 scopus 로고    scopus 로고
    • Vibrational analysis of mononitro substituted benzamides, benzaldehydes and toluenes Part II. Transferability of valence force constants
    • Qayyum M.D., Venkatram Reddy B., Ramana Rao G. Vibrational analysis of mononitro substituted benzamides, benzaldehydes and toluenes Part II. Transferability of valence force constants. Spectrochim. Acta Part A 2004, 60:291-295.
    • (2004) Spectrochim. Acta Part A , vol.60 , pp. 291-295
    • Qayyum, M.D.1    Venkatram Reddy, B.2    Ramana Rao, G.3
  • 47
    • 0027561638 scopus 로고
    • Emissivity correction in infrared microthermography
    • Chen Z., Uchida T., Minami S. Emissivity correction in infrared microthermography. Measurement 1993, 11:55-64.
    • (1993) Measurement , vol.11 , pp. 55-64
    • Chen, Z.1    Uchida, T.2    Minami, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.