메뉴 건너뛰기




Volumn 16, Issue 3, 2013, Pages 695-708

Existence of positive solutions to a higher order singular boundary value problem with fractional q-derivatives

Author keywords

boundary value problems; existence; fractional q calculus; positive solutions

Indexed keywords


EID: 84879757760     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-013-0044-5     Document Type: Article
Times cited : (29)

References (36)
  • 1
    • 84971113538 scopus 로고
    • Certain fractional q-integrals and q-derivatives
    • 0179.16901 10.1017/S0305004100045060
    • R.P. Agarwal, Certain fractional q-integrals and q-derivatives. Math. Proc. Cambridge Philos. Soc. 66 (1969), 365-370.
    • (1969) Math. Proc. Cambridge Philos. Soc. , vol.66 , pp. 365-370
    • Agarwal, R.P.1
  • 3
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • 2660986 1206.34009 10.1016/j.jmaa.2010.04.034
    • R.P. Agarwal, D. O'Regan, and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57-68.
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stanek, S.3
  • 4
    • 84862666375 scopus 로고    scopus 로고
    • On the existence of solutions of fractional integro-differential equations
    • 2872111
    • A. Aghajani, Y. Jalilian, and J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44-69; DOI: 10.2478/s13540-012-0005-4; at http://link. springer.com/journal/13540
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 44-69
    • Aghajani, A.1    Jalilian, Y.2    Trujillo, J.J.3
  • 5
    • 84866126350 scopus 로고    scopus 로고
    • Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative
    • 2944110
    • B. Ahmad and J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 451-462; DOI: 10.2478/s13540-012-0032-1; at http://link.springer.com/journal/13540.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.3 , pp. 451-462
    • Ahmad, B.1    Nieto, J.J.2
  • 6
    • 77955713929 scopus 로고    scopus 로고
    • On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order
    • 2678559 1207.45014 10.1016/j.amc.2010.05.080
    • B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217 (2010), 480-487.
    • (2010) Appl. Math. Comput. , vol.217 , pp. 480-487
    • Ahmad, B.1    Sivasundaram, S.2
  • 7
    • 84974177889 scopus 로고
    • Some fractional q-integrals and q-derivatives
    • 218848 0171.10301 10.1017/S0013091500011469
    • W.A. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 15 (1966-1967), 135-140.
    • (1966) Proc. Edinburgh Math. Soc. , vol.15 , pp. 135-140
    • Al-Salam, W.A.1
  • 8
    • 35748962937 scopus 로고    scopus 로고
    • Fractional q-calculus on a time scale
    • 2350094 10.2991/jnmp.2007.14.3.4
    • F.M. Atici and P.W. Eloe, Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14 (2007), 333-344.
    • (2007) J. Nonlinear Math. Phys. , vol.14 , pp. 333-344
    • Atici, F.M.1    Eloe, P.W.2
  • 9
    • 77950548183 scopus 로고    scopus 로고
    • A transform method in discrete fractional calculus
    • 2493595
    • F.M. Atici and P.W. Eloe, A transform method in discrete fractional calculus. Int. J. Difference Equ. 2 (2007), 165-176.
    • (2007) Int. J. Difference Equ. , vol.2 , pp. 165-176
    • Atici, F.M.1    Eloe, P.W.2
  • 10
    • 74149083825 scopus 로고    scopus 로고
    • Initial value problems in discrete fractional calculus
    • 2457438 1166.39005 10.1090/S0002-9939-08-09626-3
    • F.M. Atici and P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137 (2009), 981-989.
    • (2009) Proc. Amer. Math. Soc. , vol.137 , pp. 981-989
    • Atici, F.M.1    Eloe, P.W.2
  • 11
    • 79953286192 scopus 로고    scopus 로고
    • Two-point boundary value problems for finite fractional difference equations
    • 2783359 1215.39002 10.1080/10236190903029241
    • F.M. Atici and P.W. Eloe, Two-point boundary value problems for finite fractional difference equations. J. Difference Equ. Appl. 17 (2011), 445-456.
    • (2011) J. Difference Equ. Appl. , vol.17 , pp. 445-456
    • Atici, F.M.1    Eloe, P.W.2
  • 12
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equations
    • 2168413 1079.34048 10.1016/j.jmaa.2005.02.052
    • Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equations. J. Math. Anal. Appl. 311 (2005), 495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 13
    • 78651241495 scopus 로고    scopus 로고
    • Necessary optimality condition for fractional difference problems of the calculus of variation
    • 2728463 1209.49020 10.3934/dcds.2011.29.417
    • N.R.O. Bastos, R.A.C. Ferreira, and D.F.M. Torres, Necessary optimality condition for fractional difference problems of the calculus of variation. Discrete Contin. Dyn. Syst. 29 (2011), 417-437.
    • (2011) Discrete Contin. Dyn. Syst. , vol.29 , pp. 417-437
    • Bastos, N.R.O.1    Ferreira, R.A.C.2    Torres, D.F.M.3
  • 14
    • 78049333168 scopus 로고    scopus 로고
    • Discrete-time fractional variational problems
    • 1203.94022 10.1016/j.sigpro.2010.05.001
    • N.R.O. Bastos, R.A.C. Ferreira, and D.F.M. Torres, Discrete-time fractional variational problems. Signal Process. 91 (2011), 513-524.
    • (2011) Signal Process. , vol.91 , pp. 513-524
    • Bastos, N.R.O.1    Ferreira, R.A.C.2    Torres, D.F.M.3
  • 15
    • 79953318713 scopus 로고    scopus 로고
    • Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform
    • 2800417
    • N.R.O. Bastos, D. Mozyrska, and D.F.M. Torres, Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11 (2011), 1-9.
    • (2011) Int. J. Math. Comput. , vol.11 , pp. 1-9
    • Bastos, N.R.O.1    Mozyrska, D.2    Torres, D.F.M.3
  • 16
    • 84869152261 scopus 로고    scopus 로고
    • A note on the existence of solutions for some boundary value problems of fractional differential inclusions
    • 2897772
    • A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No (2012), 183-194; DOI: 10.2478/s13540-012-0013-4; at http://link.springer.com/ journal/13540.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , pp. 183-194
    • Cernea, A.1
  • 17
    • 84860466937 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional q-difference equation
    • M. El-Shahed and F. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional q-difference equation. ISRN Math. Anal. (2011), Art. ID 385459, 12 pp.
    • (2011) ISRN Math. Anal
    • El-Shahed, M.1    Al-Askar, F.2
  • 18
    • 77951154272 scopus 로고    scopus 로고
    • Positive solutions of q difference equation
    • 2587458 1201.39003 10.1090/S0002-9939-09-10185-5
    • M. El-Shahed and H. A. Hassan, Positive solutions of q difference equation. Proc. Amer. Math. Soc. 138 (2010), 1733-1738.
    • (2010) Proc. Amer. Math. Soc. , vol.138 , pp. 1733-1738
    • El-Shahed, M.1    Hassan, H.A.2
  • 19
    • 78651236363 scopus 로고    scopus 로고
    • Positive solutions for a class of boundary value problems with fractional q-differences
    • 2754144 1216.39013 10.1016/j.camwa.2010.11.012
    • R.A.C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61 (2011), 367-373.
    • (2011) Comput. Math. Appl. , vol.61 , pp. 367-373
    • Ferreira, R.A.C.1
  • 20
    • 85086615474 scopus 로고    scopus 로고
    • Nontrivial solutions for fractional q-difference boundary value problems
    • R.A.C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Diff. Equ., No 70, (2010), 1-10.
    • (2010) Electron. J. Qual. Theory Diff. Equ., No 70 , pp. 1-10
    • Ferreira, R.A.C.1
  • 21
    • 84856356825 scopus 로고    scopus 로고
    • Fractional boundary value problems: Analysis and numerical methods
    • 2846376
    • N.J. Ford and M.L. Morgado, Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 554-567; DOI: 10.2478/s13540-011-0034-4; at http://link.springer.com/journal/13540.
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.4 , pp. 554-567
    • Ford, N.J.1    Morgado, M.L.2
  • 22
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • 2659137 1204.34007 10.1016/j.aml.2010.04.035
    • C.S. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23 (2010), 1050-1055.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.S.1
  • 23
    • 77953136599 scopus 로고    scopus 로고
    • Continuity of solutions to discrete fractional initial value problem
    • 2646320 1197.39002 10.1016/j.camwa.2010.03.040
    • C.S. Goodrich, Continuity of solutions to discrete fractional initial value problem. Comput. Math. Appl. 59 (2010), 3489-3499.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3489-3499
    • Goodrich, C.S.1
  • 24
    • 78651230726 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
    • 2754129 1211.39002 10.1016/j.camwa.2010.10.041
    • C.S. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 61 (2011), 191-202.
    • (2011) Comput. Math. Appl. , vol.61 , pp. 191-202
    • Goodrich, C.S.1
  • 25
    • 80051790398 scopus 로고    scopus 로고
    • On discrete sequential fractional boundary value problems
    • 2832079 1236.39008 10.1016/j.jmaa.2011.06.022
    • C.S. Goodrich, On discrete sequential fractional boundary value problems. J. Math. Anal. Appl. 385 (2012), 111-124.
    • (2012) J. Math. Anal. Appl. , vol.385 , pp. 111-124
    • Goodrich, C.S.1
  • 26
    • 84860430866 scopus 로고    scopus 로고
    • Positive solutions for a class of higher order boundary value problems with fractional q-derivatives
    • 2916148 1254.34010 10.1016/j.amc.2012.03.006
    • J.R. Graef and L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218 (2012), 9682-9689.
    • (2012) Appl. Math. Comput. , vol.218 , pp. 9682-9689
    • Graef, J.R.1    Kong, L.2
  • 27
    • 84887810871 scopus 로고    scopus 로고
    • Application of the mixed monotone operator method to fractional boundary value problems
    • 3003004 10.7153/fdc-02-06
    • J.R. Graef, L. Kong, and Q. Kong, Application of the mixed monotone operator method to fractional boundary value problems. Fract. Differ. Calc. 2 (2012), 87-98.
    • (2012) Fract. Differ. Calc. , vol.2 , pp. 87-98
    • Graef, J.R.1    Kong, L.2    Kong, Q.3
  • 28
    • 84869177904 scopus 로고    scopus 로고
    • Uniqueness of positive solutions of fractional boundary value problems with nonhomogeneous integral boundary conditions
    • 2944114
    • J.R. Graef, L. Kong, Q. Kong, and M. Wang, Uniqueness of positive solutions of fractional boundary value problems with nonhomogeneous integral boundary conditions. Fract. Calc. Appl. Anal. 15, No 3 (2012), 509-528; DOI: 10.2478/s13540-012-0036-x; at http://link.springer.com/journal/13540.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.3 , pp. 509-528
    • Graef, J.R.1    Kong, L.2    Kong, Q.3    Wang, M.4
  • 29
    • 84860461303 scopus 로고    scopus 로고
    • Positive solutions for a semipositone fractional boundary value problem with a forcing term
    • 2872108
    • J.R. Graef, L. Kong, and B. Yang, Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 15, No 1 (2012), 8-24; DOI: 10.2478/s13540-012-0002-7; at http://link.springer. com/journal/13540.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 8-24
    • Graef, J.R.1    Kong, L.2    Yang, B.3
  • 30
    • 0037675743 scopus 로고    scopus 로고
    • Springer New York 0986.05001 10.1007/978-1-4613-0071-7
    • V. Kac and P. Cheung, Quantum Calculus. Springer, New York, 2002.
    • (2002) Quantum Calculus
    • Kac, V.1    Cheung, P.2
  • 35
    • 84866054434 scopus 로고    scopus 로고
    • Monotone iterative method for a class of nonlinear fractional differential equations
    • 2897777
    • G. Wang, D. Baleanu, and L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244-252; DOI: 10.2478/s13540-012-0018-z; at http://link.springer.com/ journal/13540.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 244-252
    • Wang, G.1    Baleanu, D.2    Zhang, L.3
  • 36
    • 79952445167 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equations
    • 2775685 1227.34011 10.1016/j.amc.2011.01.103
    • Y. Zhao, S. Sun, Z. Han, and M. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217 (2011), 6950-6958.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 6950-6958
    • Zhao, Y.1    Sun, S.2    Han, Z.3    Zhang, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.