-
1
-
-
77954144417
-
Positive solutions for dirichlet problems of singular nonlinear fractional differential equations
-
R. Agarwal, D. O'Regan, and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57-68.
-
(2010)
J. Math. Anal. Appl.
, vol.371
, pp. 57-68
-
-
Agarwal, R.1
O'Regan, D.2
Stanek, S.3
-
2
-
-
84862666375
-
On the existence of solutions of fractional integro-differential equations
-
DOI: 102478/s13540-44-69 DOI: 102478/s13012
-
A. Aghajani, Y. Jalilian, and J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44-69; DOI: 10.2478/s13540-012-0005-4; http://www. springerlink.com/content/1311-0454/15/1/
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.1
, pp. 44-69
-
-
Aghajani, A.1
Jalilian, Y.2
Trujillo, J.J.3
-
3
-
-
0001859932
-
A general solution for the fourth-order fractional diffusion-wave equation
-
O.P. Agrawal A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3 (2000), 1-12; http://www.math.bas.bg/fcaa
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, pp. 1-12
-
-
Agrawal, O.P.1
-
4
-
-
79955871260
-
Dependence of the unique solution of a periodic boundary value problem on the parameter
-
H. Bellout, Q. Kong, and M. Wang, Dependence of the unique solution of a periodic boundary value problem on the parameter. Appl. Math. Comput. 217 (2011), 7838-7844.
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 7838-7844
-
-
Bellout, H.1
Kong, Q.2
Wang, M.3
-
5
-
-
25144460994
-
Positive solutions for boundary value problem of nonlinear fractional differential equation
-
Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505.
-
(2005)
J. Math. Anal. Appl.
, vol.311
, pp. 495-505
-
-
Bai, Z.1
Lü, H.2
-
6
-
-
78650805632
-
On the existence of solutions for fractional differential inclusions with boundary conditions
-
available at
-
A. Cernea, On the existence of solutions for fractional differential inclusions with boundary conditions, Fract. Calc. Appl. Anal. 12, No 4 (2009), 433-442; available at www.math.bas.bg/fcaa/volume12/fcaa124/Cernea fcaa 12 4.pdf
-
(2009)
Fract. Calc. Appl. Anal.
, vol.12
, Issue.4
, pp. 433-442
-
-
Cernea, A.1
-
7
-
-
84869152261
-
A note on the existence of solutions for some boundary value problems of fractional differential inclusions
-
DOI: 102478/s13540-183-194 DOI: 102478/s13012
-
A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183-194; DOI: 10.2478/s13540-012-0013-4; http://www.springerlink.com/ content/1311-0454/15/2/
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.2
, pp. 183-194
-
-
Cernea, A.1
-
8
-
-
76649109382
-
Impulsive fractional differential inclusions involving the caputo fractional derivative
-
available at
-
E. Ait Dads, M. Benchohra, and S. Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative. Fract. Calc. Appl. Anal. 12, No 1 (2009), 15-38; available at http://www.math.bas.bg/fcaa/ volume12/fcaa121/Dads Benchohra Hamani FCAA 121.pdf
-
(2009)
Fract. Calc. Appl. Anal.
, vol.12
, Issue.1
, pp. 15-38
-
-
Ait Dads, E.1
Benchohra, M.2
Hamani, S.3
-
9
-
-
17844394750
-
Fractional integral and fractional differential equations in fluid mechanics
-
L. Debnath, Fractional integral and fractional differential equations in fluid mechanics. Fract. Calc. Appl. Anal. 6 (2003), 119-156; http://www.math.bas.bg/fcaa
-
(2003)
Fract. Calc. Appl. Anal.
, vol.6
, pp. 119-156
-
-
Debnath, L.1
-
10
-
-
79956141424
-
Higher order singular multi-point boundary value problems on time scales
-
A. Dogan, J.R. Graef, and L. Kong, Higher order singular multi-point boundary value problems on time scales, Proc. Edinburgh Math. Soc. 54 (2011), 345-361.
-
(2011)
Proc. Edinburgh Math. Soc.
, vol.54
, pp. 345-361
-
-
Dogan, A.1
Graef, J.R.2
Kong, L.3
-
11
-
-
0033825937
-
Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems
-
L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Modelling 32 (2000), 529-539.
-
(2000)
Math. Comput. Modelling
, vol.32
, pp. 529-539
-
-
Erbe, L.1
-
12
-
-
84856356825
-
Fractional boundary value problems: Analysis and numerical methods
-
DOI: 102478/s13540-554-567 DOI: 102478/s13011
-
N.J. Ford and M.L. Morgado, Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 554-567; DOI: 10.2478/s13540-011-0034-4; http://www.springerlink.com/content/1311-0454/14/4/
-
(2011)
Fract. Calc. Appl. Anal.
, vol.14
, Issue.4
, pp. 554-567
-
-
Ford, N.J.1
Morgado, M.L.2
-
13
-
-
55549115983
-
Some fixed point theorems and existence of positive solutions of two-point boundary-value problems
-
W. Ge and C. Xue, Some fixed point theorems and existence of positive solutions of two-point boundary-value problems, Nonlinear Anal. 70 (2009), 16-31.
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 16-31
-
-
Ge, W.1
Xue, C.2
-
14
-
-
77953688007
-
Existence of a positive solution to a class of fractional differential equations
-
C. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23 (2010), 1050-1055.
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 1050-1055
-
-
Goodrich, C.1
-
15
-
-
68349136723
-
Existence results for nonlinear periodic boundary value problems
-
J.R. Graef and L. Kong, Existence results for nonlinear periodic boundary value problems. Proc. Edinburgh Math. Soc. 52 (2009), 79-95.
-
(2009)
Proc. Edinburgh Math. Soc.
, vol.52
, pp. 79-95
-
-
Graef, J.R.1
Kong, L.2
-
16
-
-
84869151546
-
Application of the mixed monotone operator method to fractional boundary value problems
-
To Appear
-
J.R. Graef, L. Kong, and Q. Kong, Application of the mixed monotone operator method to fractional boundary value problems. Fractional Differential Calculus, To appear.
-
Fractional Differential Calculus
-
-
Graef, J.R.1
Kong, L.2
Kong, Q.3
-
18
-
-
46449089630
-
Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem
-
J.R. Graef, L. Kong, and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J. Differential Equations 245 (2008), 1185-1197.
-
(2008)
J. Differential Equations
, vol.245
, pp. 1185-1197
-
-
Graef, J.R.1
Kong, L.2
Wang, H.3
-
20
-
-
84860461303
-
Positive solutions for a semipositone fractional boundary value problem with a forcing term
-
DOI: 102478/s13540-8-24 DOI: 102478/s13012
-
J.R. Graef, L. Kong, and B. Yang, Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 15, No 1 (2012), 8-24; DOI: 10.2478/s13540-012-0002-7; http://www.springerlink. com/content/1311-0454/15/1/
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.1
, pp. 8-24
-
-
Graef, J.R.1
Kong, L.2
Yang, B.3
-
22
-
-
0242593196
-
Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces
-
D. Jiang, J. Chua, D. O'Regan, and R. Agarwal, Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J. Math. Anal. Appl. 286 (2003), 563-576.
-
(2003)
J. Math. Anal. Appl.
, vol.286
, pp. 563-576
-
-
Jiang, D.1
Chua, J.2
O'Regan, D.3
Agarwal, R.4
-
23
-
-
71649090846
-
The positive properties of the green function for dirichlet-type boundary value problems of nonlinear fractional differential equations and its application
-
D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72 (2010), 710-719.
-
(2010)
Nonlinear Anal.
, vol.72
, pp. 710-719
-
-
Jiang, D.1
Yuan, C.2
-
25
-
-
21244431644
-
Positive solutions of higher-order boundary value problems
-
L. Kong and Q. Kong, Positive solutions of higher-order boundary value problems. Proc. Edinburgh Math. Soc. 48 (2005), 445-464.
-
(2005)
Proc. Edinburgh Math. Soc.
, vol.48
, pp. 445-464
-
-
Kong, L.1
Kong, Q.2
-
26
-
-
84863231941
-
Positive solutions of nonlinear fractional boundary value problems with dirichlet boundary conditions
-
Q. Kong and M. Wang, Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions. Electron. J. Qual. Theory Differ. Equ., No. 17 (2012), 1-13.
-
(2012)
Electron. J. Qual. Theory Differ. Equ.
, vol.17
, pp. 1-13
-
-
Kong, Q.1
Wang, M.2
-
27
-
-
84873681900
-
Eigenvalue approach of even order system periodic boundary value problems
-
doi:10.4153/CMB-2011-138-143
-
Q. Kong and M. Wang, Eigenvalue approach of even order system periodic boundary value problems. Canad. Math. Bull.; doi:10.4153/CMB-2011-138-3.
-
Canad. Math. Bull.
-
-
Kong, Q.1
Wang, M.2
-
28
-
-
84863292741
-
Positive solutions of even order periodic boundary value problems
-
Q. Kong and M.Wang, Positive solutions of even order periodic boundary value problems. Rocky Mountain J. Math. 41 (2011), 1907-1931.
-
(2011)
Rocky Mountain J. Math.
, vol.41
, pp. 1907-1931
-
-
Kong, Q.1
Wang, M.2
-
29
-
-
71549169930
-
Positive solutions of even order system periodic boundary value problems
-
Q. Kong and M.Wang, Positive solutions of even order system periodic boundary value problems. Nonlinear Anal. 72 (2010), 1778-1791.
-
(2010)
Nonlinear Anal.
, vol.72
, pp. 1778-1791
-
-
Kong, Q.1
Wang, M.2
-
30
-
-
80051653285
-
Professor rudolf gorenflo and his contribution to fractional calculus
-
DOI: 102478/s13540-3-18 DOI: 102478/s13011
-
Y. Luchko, F. Mainardi, and S. Rogosin, Professor Rudolf Gorenflo and his contribution to fractional calculus. Fract. Calc. Appl. Anal. 14, No 1 (2011), 3-18; DOI: 10.2478/s13540-011-0002-z; http://www.springerlink.com/content/1311- 0454/14/1/
-
(2011)
Fract. Calc. Appl. Anal.
, vol.14
, Issue.1
, pp. 3-18
-
-
Luchko, Y.1
Mainardi, F.2
Rogosin, S.3
-
33
-
-
33646737001
-
Positive periodic solutions of systems of second order ordinary differential equations
-
D. O'Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations. Positivity 10 (2006), 285-298.
-
(2006)
Positivity
, vol.10
, pp. 285-298
-
-
O'Regan, D.1
Wang, H.2
-
35
-
-
0038702598
-
Existence of one-signed periodic solutions of some secondorder differential equations via a krasnosel'skii fixed point theorem
-
P.J. Torres, Existence of one-signed periodic solutions of some secondorder differential equations via a Krasnosel'skii fixed point theorem. J. Differential Equations 190 (2003), 643-662.
-
(2003)
J. Differential Equations
, vol.190
, pp. 643-662
-
-
Torres, P.J.1
-
37
-
-
0001611264
-
Some approximations of fractional order operators used in control theory and applications
-
B. M. Vinagre, I. Podlubny, A. Hern'andez, and V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3 (2000), 231-248; http://www.math.bas. bg/fcaa
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, pp. 231-248
-
-
Vinagre, B.M.1
Podlubny, I.2
Hern'andez, A.3
Feliu, V.4
-
38
-
-
84866054434
-
Monotone iterative method for a class of nonlinear fractional differential equations
-
DOI: 102478/s13540-244-252 DOI: 102478/s13012
-
G. Wang, D. Baleanu, and L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244-252; DOI: 10.2478/s13540-012-0018-z; http://www.springerlink.com/ content/1311-0454/15/2/
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.2
, pp. 244-252
-
-
Wang, G.1
Baleanu, D.2
Zhang, L.3
-
39
-
-
77953682735
-
Unique positive solutions for fractional differential equation boundary value problems
-
L. Yang and H. Chen, Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 23 (2010), 1095-1098.
-
(2010)
Appl. Math. Lett.
, vol.23
, pp. 1095-1098
-
-
Yang, L.1
Chen, H.2
-
41
-
-
84655160882
-
Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems
-
C. Zhai and M. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems. Nonlinear Anal. 75 (2012), 2542-2551.
-
(2012)
Nonlinear Anal.
, vol.75
, pp. 2542-2551
-
-
Zhai, C.1
Hao, M.2
-
42
-
-
79958069654
-
New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems
-
C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems. J. Math. Anal. Appl. 382 (2011), 594-614.
-
(2011)
J. Math. Anal. Appl.
, vol.382
, pp. 594-614
-
-
Zhai, C.1
Zhang, L.2
-
43
-
-
74149089358
-
Positive solutions to singular boundary value problem for nonlinear fractional differential equation
-
S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59 (2010), 1300-1309.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1300-1309
-
-
Zhang, S.1
|