메뉴 건너뛰기




Volumn 15, Issue 3, 2012, Pages 509-528

Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions

Author keywords

Fractional calculus; Integral boundary condition; Non homogeneous boundary condition; Positive solutions; Uniqueness

Indexed keywords


EID: 84869177904     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0036-x     Document Type: Article
Times cited : (68)

References (43)
  • 1
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for dirichlet problems of singular nonlinear fractional differential equations
    • R. Agarwal, D. O'Regan, and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371 (2010), 57-68.
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.1    O'Regan, D.2    Stanek, S.3
  • 2
    • 84862666375 scopus 로고    scopus 로고
    • On the existence of solutions of fractional integro-differential equations
    • DOI: 102478/s13540-44-69 DOI: 102478/s13012
    • A. Aghajani, Y. Jalilian, and J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44-69; DOI: 10.2478/s13540-012-0005-4; http://www. springerlink.com/content/1311-0454/15/1/
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 44-69
    • Aghajani, A.1    Jalilian, Y.2    Trujillo, J.J.3
  • 3
    • 0001859932 scopus 로고    scopus 로고
    • A general solution for the fourth-order fractional diffusion-wave equation
    • O.P. Agrawal A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3 (2000), 1-12; http://www.math.bas.bg/fcaa
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , pp. 1-12
    • Agrawal, O.P.1
  • 4
    • 79955871260 scopus 로고    scopus 로고
    • Dependence of the unique solution of a periodic boundary value problem on the parameter
    • H. Bellout, Q. Kong, and M. Wang, Dependence of the unique solution of a periodic boundary value problem on the parameter. Appl. Math. Comput. 217 (2011), 7838-7844.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 7838-7844
    • Bellout, H.1    Kong, Q.2    Wang, M.3
  • 5
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505.
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 6
    • 78650805632 scopus 로고    scopus 로고
    • On the existence of solutions for fractional differential inclusions with boundary conditions
    • available at
    • A. Cernea, On the existence of solutions for fractional differential inclusions with boundary conditions, Fract. Calc. Appl. Anal. 12, No 4 (2009), 433-442; available at www.math.bas.bg/fcaa/volume12/fcaa124/Cernea fcaa 12 4.pdf
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , Issue.4 , pp. 433-442
    • Cernea, A.1
  • 7
    • 84869152261 scopus 로고    scopus 로고
    • A note on the existence of solutions for some boundary value problems of fractional differential inclusions
    • DOI: 102478/s13540-183-194 DOI: 102478/s13012
    • A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183-194; DOI: 10.2478/s13540-012-0013-4; http://www.springerlink.com/ content/1311-0454/15/2/
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 183-194
    • Cernea, A.1
  • 8
    • 76649109382 scopus 로고    scopus 로고
    • Impulsive fractional differential inclusions involving the caputo fractional derivative
    • available at
    • E. Ait Dads, M. Benchohra, and S. Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative. Fract. Calc. Appl. Anal. 12, No 1 (2009), 15-38; available at http://www.math.bas.bg/fcaa/ volume12/fcaa121/Dads Benchohra Hamani FCAA 121.pdf
    • (2009) Fract. Calc. Appl. Anal. , vol.12 , Issue.1 , pp. 15-38
    • Ait Dads, E.1    Benchohra, M.2    Hamani, S.3
  • 9
    • 17844394750 scopus 로고    scopus 로고
    • Fractional integral and fractional differential equations in fluid mechanics
    • L. Debnath, Fractional integral and fractional differential equations in fluid mechanics. Fract. Calc. Appl. Anal. 6 (2003), 119-156; http://www.math.bas.bg/fcaa
    • (2003) Fract. Calc. Appl. Anal. , vol.6 , pp. 119-156
    • Debnath, L.1
  • 10
    • 79956141424 scopus 로고    scopus 로고
    • Higher order singular multi-point boundary value problems on time scales
    • A. Dogan, J.R. Graef, and L. Kong, Higher order singular multi-point boundary value problems on time scales, Proc. Edinburgh Math. Soc. 54 (2011), 345-361.
    • (2011) Proc. Edinburgh Math. Soc. , vol.54 , pp. 345-361
    • Dogan, A.1    Graef, J.R.2    Kong, L.3
  • 11
    • 0033825937 scopus 로고    scopus 로고
    • Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems
    • L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems. Math. Comput. Modelling 32 (2000), 529-539.
    • (2000) Math. Comput. Modelling , vol.32 , pp. 529-539
    • Erbe, L.1
  • 12
    • 84856356825 scopus 로고    scopus 로고
    • Fractional boundary value problems: Analysis and numerical methods
    • DOI: 102478/s13540-554-567 DOI: 102478/s13011
    • N.J. Ford and M.L. Morgado, Fractional boundary value problems: analysis and numerical methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 554-567; DOI: 10.2478/s13540-011-0034-4; http://www.springerlink.com/content/1311-0454/14/4/
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.4 , pp. 554-567
    • Ford, N.J.1    Morgado, M.L.2
  • 13
    • 55549115983 scopus 로고    scopus 로고
    • Some fixed point theorems and existence of positive solutions of two-point boundary-value problems
    • W. Ge and C. Xue, Some fixed point theorems and existence of positive solutions of two-point boundary-value problems, Nonlinear Anal. 70 (2009), 16-31.
    • (2009) Nonlinear Anal. , vol.70 , pp. 16-31
    • Ge, W.1    Xue, C.2
  • 14
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positive solution to a class of fractional differential equations
    • C. Goodrich, Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23 (2010), 1050-1055.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1050-1055
    • Goodrich, C.1
  • 15
    • 68349136723 scopus 로고    scopus 로고
    • Existence results for nonlinear periodic boundary value problems
    • J.R. Graef and L. Kong, Existence results for nonlinear periodic boundary value problems. Proc. Edinburgh Math. Soc. 52 (2009), 79-95.
    • (2009) Proc. Edinburgh Math. Soc. , vol.52 , pp. 79-95
    • Graef, J.R.1    Kong, L.2
  • 16
    • 84869151546 scopus 로고    scopus 로고
    • Application of the mixed monotone operator method to fractional boundary value problems
    • To Appear
    • J.R. Graef, L. Kong, and Q. Kong, Application of the mixed monotone operator method to fractional boundary value problems. Fractional Differential Calculus, To appear.
    • Fractional Differential Calculus
    • Graef, J.R.1    Kong, L.2    Kong, Q.3
  • 18
    • 46449089630 scopus 로고    scopus 로고
    • Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem
    • J.R. Graef, L. Kong, and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J. Differential Equations 245 (2008), 1185-1197.
    • (2008) J. Differential Equations , vol.245 , pp. 1185-1197
    • Graef, J.R.1    Kong, L.2    Wang, H.3
  • 20
    • 84860461303 scopus 로고    scopus 로고
    • Positive solutions for a semipositone fractional boundary value problem with a forcing term
    • DOI: 102478/s13540-8-24 DOI: 102478/s13012
    • J.R. Graef, L. Kong, and B. Yang, Positive solutions for a semipositone fractional boundary value problem with a forcing term. Fract. Calc. Appl. Anal. 15, No 1 (2012), 8-24; DOI: 10.2478/s13540-012-0002-7; http://www.springerlink. com/content/1311-0454/15/1/
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 8-24
    • Graef, J.R.1    Kong, L.2    Yang, B.3
  • 22
    • 0242593196 scopus 로고    scopus 로고
    • Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces
    • D. Jiang, J. Chua, D. O'Regan, and R. Agarwal, Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J. Math. Anal. Appl. 286 (2003), 563-576.
    • (2003) J. Math. Anal. Appl. , vol.286 , pp. 563-576
    • Jiang, D.1    Chua, J.2    O'Regan, D.3    Agarwal, R.4
  • 23
    • 71649090846 scopus 로고    scopus 로고
    • The positive properties of the green function for dirichlet-type boundary value problems of nonlinear fractional differential equations and its application
    • D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72 (2010), 710-719.
    • (2010) Nonlinear Anal. , vol.72 , pp. 710-719
    • Jiang, D.1    Yuan, C.2
  • 25
    • 21244431644 scopus 로고    scopus 로고
    • Positive solutions of higher-order boundary value problems
    • L. Kong and Q. Kong, Positive solutions of higher-order boundary value problems. Proc. Edinburgh Math. Soc. 48 (2005), 445-464.
    • (2005) Proc. Edinburgh Math. Soc. , vol.48 , pp. 445-464
    • Kong, L.1    Kong, Q.2
  • 26
    • 84863231941 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional boundary value problems with dirichlet boundary conditions
    • Q. Kong and M. Wang, Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions. Electron. J. Qual. Theory Differ. Equ., No. 17 (2012), 1-13.
    • (2012) Electron. J. Qual. Theory Differ. Equ. , vol.17 , pp. 1-13
    • Kong, Q.1    Wang, M.2
  • 27
    • 84873681900 scopus 로고    scopus 로고
    • Eigenvalue approach of even order system periodic boundary value problems
    • doi:10.4153/CMB-2011-138-143
    • Q. Kong and M. Wang, Eigenvalue approach of even order system periodic boundary value problems. Canad. Math. Bull.; doi:10.4153/CMB-2011-138-3.
    • Canad. Math. Bull.
    • Kong, Q.1    Wang, M.2
  • 28
    • 84863292741 scopus 로고    scopus 로고
    • Positive solutions of even order periodic boundary value problems
    • Q. Kong and M.Wang, Positive solutions of even order periodic boundary value problems. Rocky Mountain J. Math. 41 (2011), 1907-1931.
    • (2011) Rocky Mountain J. Math. , vol.41 , pp. 1907-1931
    • Kong, Q.1    Wang, M.2
  • 29
    • 71549169930 scopus 로고    scopus 로고
    • Positive solutions of even order system periodic boundary value problems
    • Q. Kong and M.Wang, Positive solutions of even order system periodic boundary value problems. Nonlinear Anal. 72 (2010), 1778-1791.
    • (2010) Nonlinear Anal. , vol.72 , pp. 1778-1791
    • Kong, Q.1    Wang, M.2
  • 30
    • 80051653285 scopus 로고    scopus 로고
    • Professor rudolf gorenflo and his contribution to fractional calculus
    • DOI: 102478/s13540-3-18 DOI: 102478/s13011
    • Y. Luchko, F. Mainardi, and S. Rogosin, Professor Rudolf Gorenflo and his contribution to fractional calculus. Fract. Calc. Appl. Anal. 14, No 1 (2011), 3-18; DOI: 10.2478/s13540-011-0002-z; http://www.springerlink.com/content/1311- 0454/14/1/
    • (2011) Fract. Calc. Appl. Anal. , vol.14 , Issue.1 , pp. 3-18
    • Luchko, Y.1    Mainardi, F.2    Rogosin, S.3
  • 33
    • 33646737001 scopus 로고    scopus 로고
    • Positive periodic solutions of systems of second order ordinary differential equations
    • D. O'Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations. Positivity 10 (2006), 285-298.
    • (2006) Positivity , vol.10 , pp. 285-298
    • O'Regan, D.1    Wang, H.2
  • 35
    • 0038702598 scopus 로고    scopus 로고
    • Existence of one-signed periodic solutions of some secondorder differential equations via a krasnosel'skii fixed point theorem
    • P.J. Torres, Existence of one-signed periodic solutions of some secondorder differential equations via a Krasnosel'skii fixed point theorem. J. Differential Equations 190 (2003), 643-662.
    • (2003) J. Differential Equations , vol.190 , pp. 643-662
    • Torres, P.J.1
  • 37
    • 0001611264 scopus 로고    scopus 로고
    • Some approximations of fractional order operators used in control theory and applications
    • B. M. Vinagre, I. Podlubny, A. Hern'andez, and V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3 (2000), 231-248; http://www.math.bas. bg/fcaa
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , pp. 231-248
    • Vinagre, B.M.1    Podlubny, I.2    Hern'andez, A.3    Feliu, V.4
  • 38
    • 84866054434 scopus 로고    scopus 로고
    • Monotone iterative method for a class of nonlinear fractional differential equations
    • DOI: 102478/s13540-244-252 DOI: 102478/s13012
    • G. Wang, D. Baleanu, and L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244-252; DOI: 10.2478/s13540-012-0018-z; http://www.springerlink.com/ content/1311-0454/15/2/
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 244-252
    • Wang, G.1    Baleanu, D.2    Zhang, L.3
  • 39
    • 77953682735 scopus 로고    scopus 로고
    • Unique positive solutions for fractional differential equation boundary value problems
    • L. Yang and H. Chen, Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 23 (2010), 1095-1098.
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1095-1098
    • Yang, L.1    Chen, H.2
  • 41
    • 84655160882 scopus 로고    scopus 로고
    • Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems
    • C. Zhai and M. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems. Nonlinear Anal. 75 (2012), 2542-2551.
    • (2012) Nonlinear Anal. , vol.75 , pp. 2542-2551
    • Zhai, C.1    Hao, M.2
  • 42
    • 79958069654 scopus 로고    scopus 로고
    • New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems
    • C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems. J. Math. Anal. Appl. 382 (2011), 594-614.
    • (2011) J. Math. Anal. Appl. , vol.382 , pp. 594-614
    • Zhai, C.1    Zhang, L.2
  • 43
    • 74149089358 scopus 로고    scopus 로고
    • Positive solutions to singular boundary value problem for nonlinear fractional differential equation
    • S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59 (2010), 1300-1309.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1300-1309
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.