메뉴 건너뛰기




Volumn 15, Issue 3, 2012, Pages 451-462

Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative

Author keywords

Anti periodic boundary conditions; Fixed point theorems; Fractional differential equations

Indexed keywords


EID: 84866126350     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0032-1     Document Type: Article
Times cited : (47)

References (24)
  • 1
    • 84867518412 scopus 로고    scopus 로고
    • On fractional order derivatives and darboux problem for implicit differential equations
    • DOI: 102478/s13540-168-182 DOI: 102478/s13012
    • S. Abbas, M. Benchohra, A.N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 168-182; DOI: 10.2478/s13540-012-0012-5; http://www. springerlink.com/content/1311-0454/15/2/.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 168-182
    • Abbas, S.1    Benchohra, M.2    Vityuk, A.N.3
  • 2
    • 79961065200 scopus 로고    scopus 로고
    • Existence of solutions for impulsive antiperiodic boundary value problems of fractional semilinear evolution equations
    • R.P. Agarwal, B. Ahmad, Existence of solutions for impulsive antiperiodic boundary value problems of fractional semilinear evolution equations. Dynam. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 457-470.
    • (2011) Dynam. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. , vol.18 , pp. 457-470
    • Agarwal, R.P.1    Ahmad, B.2
  • 3
    • 67650110018 scopus 로고    scopus 로고
    • A survey on semilinear differential equations and inclusions involving riemann-liouville fractional derivative
    • Art. ID 981728
    • R.P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Difference Equ. 2009 (2009), Art. ID 981728, 47 pp.
    • (2009) Adv. Difference Equ. , vol.2009
    • Agarwal, R.P.1    Belmekki, M.2    Benchohra, M.3
  • 4
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, No 6 (2010), 2859-2862.
    • (2010) Nonlinear Anal. , vol.72 , Issue.6 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 5
    • 84862666375 scopus 로고    scopus 로고
    • On the existence of solutions of fractional integro-differential equations
    • DOI: 102478/s13540-44-69 DOI: 102478/s13012
    • A. Aghajani, Y. Jalilian, J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44-69; DOI: 10.2478/s13540-012-0005-4; http://www.springerlink.com/ content/1311-0454/15/1/.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.1 , pp. 44-69
    • Aghajani, A.1    Jalilian, Y.2    Trujillo, J.J.3
  • 6
    • 76749131977 scopus 로고    scopus 로고
    • Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations
    • B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations. Appl. Math. Lett. 23, No 4 (2010), 390-394.
    • (2010) Appl. Math. Lett. , vol.23 , Issue.4 , pp. 390-394
    • Ahmad, B.1
  • 7
    • 77956612516 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential equations of order q ∈ (2, 3] with anti-periodic boundary conditions
    • B. Ahmad, Existence of solutions for fractional differential equations of order q ∈ (2, 3] with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, No 1-2 (2010), 385-391.
    • (2010) J. Appl. Math. Comput. , vol.34 , Issue.1-2 , pp. 385-391
    • Ahmad, B.1
  • 8
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, J.J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, No 9 (2009), 1838-1843.
    • (2009) Comput. Math. Appl. , vol.58 , Issue.9 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 9
    • 77956315480 scopus 로고    scopus 로고
    • Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via leray-schauder degree theory
    • B. Ahmad, J.J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 35, No 2 (2010), 295-304.
    • (2010) Topol. Methods Nonlinear Anal. , vol.35 , Issue.2 , pp. 295-304
    • Ahmad, B.1    Nieto, J.J.2
  • 10
    • 79960972996 scopus 로고    scopus 로고
    • Anti-periodic fractional boundary value problems
    • B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems, Comput. Math. Appl. 62, No 3 (2011), 1150-1156.
    • (2011) Comput. Math. Appl. , vol.62 , Issue.3 , pp. 1150-1156
    • Ahmad, B.1    Nieto, J.J.2
  • 11
    • 68349123813 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions
    • Art. ID 625347
    • B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. Bound. Value Probl. 2009 (2009), Art. ID 625347, 11 pages.
    • (2009) Bound. Value Probl. , vol.2009 , pp. 11
    • Ahmad, B.1    Otero-Espinar, V.2
  • 12
    • 84869152261 scopus 로고    scopus 로고
    • A note on the existence of solutions for some boundary value problems of fractional differential inclusions
    • DOI: 102478/s13540-183-194 DOI: 102478/s13012
    • A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183-194; DOI: 10.2478/s13540-012-0013-4; http://www.springerlink.com/ content/1311-0454/15/2/.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 183-194
    • Cernea, A.1
  • 13
    • 58049138945 scopus 로고    scopus 로고
    • Some new existence results for fractional differential inclusions with boundary conditions
    • Y.-K. Chang, J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Modelling 49, No 9-10 (2009), 605-609.
    • (2009) Math. Comput. Modelling , vol.49 , Issue.9-10 , pp. 605-609
    • Chang, Y.-K.1    Nieto, J.J.2
  • 14
    • 78649957202 scopus 로고    scopus 로고
    • Anti-periodic solutions for evolution equations associated with maximal monotone mappings
    • Y. Chen, J.J. Nieto, D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl. Math. Lett. 24, No 3 (2011), 302-307.
    • (2011) Appl. Math. Lett. , vol.24 , Issue.3 , pp. 302-307
    • Chen, Y.1    Nieto, J.J.2    O'Regan, D.3
  • 15
    • 74149085906 scopus 로고    scopus 로고
    • Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems
    • V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comput. Math. Appl. 59, No 3 (2010), 1101-1107.
    • (2010) Comput. Math. Appl. , vol.59 , Issue.3 , pp. 1101-1107
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 16
    • 58149197948 scopus 로고    scopus 로고
    • Fractional functional differential inclusions with finite delay
    • J. Henderson, A. Ouahab, Fractional functional differential inclusions with finite delay. Nonlinear Anal. 70 (2009), 2091-2105.
    • (2009) Nonlinear Anal. , vol.70 , pp. 2091-2105
    • Henderson, J.1    Ouahab, A.2
  • 18
    • 77955429536 scopus 로고    scopus 로고
    • Maximum principles for fractional differential equations derived from mittag-leffler functions
    • J.J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 23, No 10 (2010), 1248-1251.
    • (2010) Appl. Math. Lett. , vol.23 , Issue.10 , pp. 1248-1251
    • Nieto, J.J.1
  • 23
    • 78149286185 scopus 로고    scopus 로고
    • Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
    • G.Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74, No 3 (2011), 792-804.
    • (2011) Nonlinear Anal. , vol.74 , Issue.3 , pp. 792-804
    • Wang, G.1    Ahmad, B.2    Zhang, L.3
  • 24
    • 84866054434 scopus 로고    scopus 로고
    • Monotone iterative method for a class of nonlinear fractional differential equations
    • DOI: 102478/s13540-244-252 DOI: 102478/s13012
    • G. Wang, D. Baleanu, L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244-252; DOI: 10.2478/s13540-012-0018-z; http://www.springerlink.com/ content/1311-0454/15/2/.
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , Issue.2 , pp. 244-252
    • Wang, G.1    Baleanu, D.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.