메뉴 건너뛰기




Volumn 20, Issue 4, 2012, Pages 465-476

Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network

Author keywords

Benchmark simulation model 1; Dissolved oxygen concentration control; Model predictive control; Self organizing radial basis function; Wastewater treatment process

Indexed keywords

ACTIVATED SLUDGE; AERATION ENERGY; DISSOLVED OXYGEN CONCENTRATIONS; DO CONCENTRATION; DYNAMIC PROCESS; EFFLUENT QUALITY; HIDDEN NODES; LOWER AVERAGE; MUTUAL INFORMATIONS; NETWORK COMPLEXITY; NONLINEAR BEHAVIOR; PERFORMANCE COMPARISON; PREDICTION ACCURACY; PREDICTIVE CONTROL; PREDICTIVE CONTROL STRATEGY; RADIAL BASIS FUNCTION NEURAL NETWORKS; RBF NEURAL NETWORK; SELF ORGANIZING; SIMULATION MODEL; WASTEWATER TREATMENT PROCESS;

EID: 84857190993     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2012.01.001     Document Type: Article
Times cited : (181)

References (31)
  • 1
    • 33646724048 scopus 로고    scopus 로고
    • Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation
    • Ayesa E., Sota A.D., Grau P., Sagarna J.M., Salterain A., Suescun J. Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation. Water Science and Technology 2006, 53(4-5):193-201.
    • (2006) Water Science and Technology , vol.53 , Issue.4-5 , pp. 193-201
    • Ayesa, E.1    Sota, A.D.2    Grau, P.3    Sagarna, J.M.4    Salterain, A.5    Suescun, J.6
  • 2
    • 85013586112 scopus 로고    scopus 로고
    • Design of AI neural network based controller for controlling dissolved oxygen concentration in a sequencing batch reactor
    • Azwar, Rashid M.M., Hussain M.A. Design of AI neural network based controller for controlling dissolved oxygen concentration in a sequencing batch reactor. International Journal of Knowledge-based and Intelligent Engineering Systems 2008, 12(2):121-136.
    • (2008) International Journal of Knowledge-based and Intelligent Engineering Systems , vol.12 , Issue.2 , pp. 121-136
    • Azwar1    Rashid, M.M.2    Hussain, M.A.3
  • 3
    • 67649344705 scopus 로고    scopus 로고
    • A growing and pruning method for radial basis function networks
    • Bortman M., Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks 2009, 20(6):1039-1045.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.6 , pp. 1039-1045
    • Bortman, M.1    Aladjem, M.2
  • 4
    • 0036204897 scopus 로고    scopus 로고
    • Control of an activated sludge process with nitrogen removal-a benchmark study
    • Carlsson B., Rehnstrom A. Control of an activated sludge process with nitrogen removal-a benchmark study. Water Science and Technology 2002, 45(4-5):135-142.
    • (2002) Water Science and Technology , vol.45 , Issue.4-5 , pp. 135-142
    • Carlsson, B.1    Rehnstrom, A.2
  • 5
    • 0028574191 scopus 로고
    • On-line estimation of the respiration rate and the oxygen transfer rate at Kungsangen wastewater plant in Uppsala
    • Carlsson B., Lindberg C.F., Hasselblad S., Xu S. On-line estimation of the respiration rate and the oxygen transfer rate at Kungsangen wastewater plant in Uppsala. Water Science and Technology 1994, 30(4):255-263.
    • (1994) Water Science and Technology , vol.30 , Issue.4 , pp. 255-263
    • Carlsson, B.1    Lindberg, C.F.2    Hasselblad, S.3    Xu, S.4
  • 6
    • 25444470737 scopus 로고    scopus 로고
    • Optimal aeration control of industrial alternating activated sludge pants
    • Chachuat B., Roche N., Latifi M.A. Optimal aeration control of industrial alternating activated sludge pants. Biochemical Engineering Journal 2005, 23(3):277-289.
    • (2005) Biochemical Engineering Journal , vol.23 , Issue.3 , pp. 277-289
    • Chachuat, B.1    Roche, N.2    Latifi, M.A.3
  • 7
    • 37849185810 scopus 로고    scopus 로고
    • Backfilling missing microbial concentrations in a riverine database using artificial neural networks
    • Chandramouli V., Brion G., Neelakantan T.R., Lingireddy S. Backfilling missing microbial concentrations in a riverine database using artificial neural networks. Water Research 2007, 41(1):217-227.
    • (2007) Water Research , vol.41 , Issue.1 , pp. 217-227
    • Chandramouli, V.1    Brion, G.2    Neelakantan, T.R.3    Lingireddy, S.4
  • 10
    • 84857194786 scopus 로고
    • Activated sludge model no. 1. IAWQ Scientific and Technical Report no. 1, London, UK.
    • Henze, M., Grady, C.. P. L.., Gujer, W., Marais, G.R., & Matsuo, T. (1986). Activated sludge model no. 1. IAWQ Scientific and Technical Report no. 1, London, UK.
    • (1986)
    • Henze, M.1    Grady, C.P.L.2    Gujer, W.3    Marais, G.R.4    Matsuo, T.5
  • 12
    • 41249095980 scopus 로고    scopus 로고
    • Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control
    • Holenda B., Domokos E., Redey A., Fazakas J. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers and Chemical Engineering 2008, 32(6):1270-1278.
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.6 , pp. 1270-1278
    • Holenda, B.1    Domokos, E.2    Redey, A.3    Fazakas, J.4
  • 13
    • 67349175728 scopus 로고    scopus 로고
    • Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks
    • Huang M.Z., Wan J.Q., Ma Y.W., Wang Y., Li W.J., Sun X.F. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks. Expert Systems with Applications 2009, 36(7):10428-10437.
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10428-10437
    • Huang, M.Z.1    Wan, J.Q.2    Ma, Y.W.3    Wang, Y.4    Li, W.J.5    Sun, X.F.6
  • 14
    • 1142281080 scopus 로고    scopus 로고
    • The COST benchmark simulation model-current state and future perspective
    • Jeppsson U., Pons M.N. The COST benchmark simulation model-current state and future perspective. Control Engineering Practice 2004, 12(4):299-304.
    • (2004) Control Engineering Practice , vol.12 , Issue.4 , pp. 299-304
    • Jeppsson, U.1    Pons, M.N.2
  • 15
    • 0037377185 scopus 로고    scopus 로고
    • Quantitative measures of organization for multiagent systems
    • Krivov S., Ulanowicz R.E., Dahiya A. Quantitative measures of organization for multiagent systems. Biosystems 2003, 69(1):39-54.
    • (2003) Biosystems , vol.69 , Issue.1 , pp. 39-54
    • Krivov, S.1    Ulanowicz, R.E.2    Dahiya, A.3
  • 16
    • 41849148660 scopus 로고    scopus 로고
    • Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach
    • Kruszewski A., Wang R., Guerra T.M. Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach. IEEE Transactions on Automatic Control 2008, 53(2):606-611.
    • (2008) IEEE Transactions on Automatic Control , vol.53 , Issue.2 , pp. 606-611
    • Kruszewski, A.1    Wang, R.2    Guerra, T.M.3
  • 17
    • 23344444108 scopus 로고    scopus 로고
    • Application of remote monitoring and automatic control system using neural network for small wastewater treatment plants in Korea
    • Lee H., Lee K.M., Park C.H., Park Y.H. Application of remote monitoring and automatic control system using neural network for small wastewater treatment plants in Korea. Water Science and Technology 2005, 51(10):249-257.
    • (2005) Water Science and Technology , vol.51 , Issue.10 , pp. 249-257
    • Lee, H.1    Lee, K.M.2    Park, C.H.3    Park, Y.H.4
  • 20
    • 77951611501 scopus 로고    scopus 로고
    • A repair algorithm for RBF neural network and its application to chemical oxygen demand modeling
    • Qiao J.F., Han H.G. A repair algorithm for RBF neural network and its application to chemical oxygen demand modeling. International Journal of Neural Systems 2010, 20(1):63-74.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.1 , pp. 63-74
    • Qiao, J.F.1    Han, H.G.2
  • 22
    • 74449083388 scopus 로고    scopus 로고
    • Model predictive control for wastewater treatment process with feedforward compensation
    • Shen W., Chen X., Pons M.N., Corriou J.P. Model predictive control for wastewater treatment process with feedforward compensation. Chemical Engineering Journal 2009, 155(1-2):161-174.
    • (2009) Chemical Engineering Journal , vol.155 , Issue.1-2 , pp. 161-174
    • Shen, W.1    Chen, X.2    Pons, M.N.3    Corriou, J.P.4
  • 23
    • 53149117905 scopus 로고    scopus 로고
    • Application of model predictive control to the BSM1 benchmark of wastewater treatment process
    • Shen W.H., Chen X.Q., Corriou J.P. Application of model predictive control to the BSM1 benchmark of wastewater treatment process. Computers and Chemical Engineering 2008, 32(12):2849-2856.
    • (2008) Computers and Chemical Engineering , vol.32 , Issue.12 , pp. 2849-2856
    • Shen, W.H.1    Chen, X.Q.2    Corriou, J.P.3
  • 24
    • 34047143219 scopus 로고    scopus 로고
    • Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study
    • Stare A., Vrecko D., Hvala N., Strmcnik S. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: a simulation study. Water Research 2007, 41(9):2004-2014.
    • (2007) Water Research , vol.41 , Issue.9 , pp. 2004-2014
    • Stare, A.1    Vrecko, D.2    Hvala, N.3    Strmcnik, S.4
  • 25
    • 0032172092 scopus 로고    scopus 로고
    • Back-propagation neural network adaptive control of a continuous wastewater treatment process
    • Syu M.J., Chen B.C. Back-propagation neural network adaptive control of a continuous wastewater treatment process. Industrial Engineering Chemistry Research 1998, 37(9):3625-3630.
    • (1998) Industrial Engineering Chemistry Research , vol.37 , Issue.9 , pp. 3625-3630
    • Syu, M.J.1    Chen, B.C.2
  • 27
    • 67349086023 scopus 로고    scopus 로고
    • Multivariable PID control design for activated sludge process with nitrification and denitrification
    • Wahaba N.A., Katebia R., Balderud J. Multivariable PID control design for activated sludge process with nitrification and denitrification. Biochemical Engineering Journal 2009, 45(3):239-248.
    • (2009) Biochemical Engineering Journal , vol.45 , Issue.3 , pp. 239-248
    • Wahaba, N.A.1    Katebia, R.2    Balderud, J.3
  • 28
    • 40049107015 scopus 로고    scopus 로고
    • Predictive control of SOFC based on a GA-RBF neural network model
    • Wu X.J., Zhu X.J., Cao G.Y., Tu H.Y. Predictive control of SOFC based on a GA-RBF neural network model. Journal of Power Sources 2008, 179(1):232-239.
    • (2008) Journal of Power Sources , vol.179 , Issue.1 , pp. 232-239
    • Wu, X.J.1    Zhu, X.J.2    Cao, G.Y.3    Tu, H.Y.4
  • 29
    • 48949116212 scopus 로고    scopus 로고
    • Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process
    • Yüzgeç U., Becerikli Y., Türker M. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process. IEEE Transactions on Neural Networks 2008, 19(7):1231-1242.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.7 , pp. 1231-1242
    • Yüzgeç, U.1    Becerikli, Y.2    Türker, M.3
  • 30
    • 1142305278 scopus 로고    scopus 로고
    • Comparison of advanced control strategies for improving the monitoring of activated sludge processes
    • Zarrad W., Harmand J., Devisscher M., Steyer J.P. Comparison of advanced control strategies for improving the monitoring of activated sludge processes. Control Engineering Practice 2004, 12(3):323-333.
    • (2004) Control Engineering Practice , vol.12 , Issue.3 , pp. 323-333
    • Zarrad, W.1    Harmand, J.2    Devisscher, M.3    Steyer, J.P.4
  • 31
    • 39049171204 scopus 로고    scopus 로고
    • Controlling a coupled set of biological reactors for wastewater treatment
    • Zhang X., Hoo K.A. Controlling a coupled set of biological reactors for wastewater treatment. Control Engineering Practice 2008, 16(5):553-568.
    • (2008) Control Engineering Practice , vol.16 , Issue.5 , pp. 553-568
    • Zhang, X.1    Hoo, K.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.