-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
B. N. Petrov and F. Csaki, editors
-
H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, 2nd International Symposium on Information Theory, pages 267-281, 1973
-
(1973)
2nd International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
65749085584
-
Reverse engineering of NK boolean network and its extensions-fuzzy logic network FLN
-
Y. Cao, P. P.Wang, and A. Tokuta. Reverse engineering of NK boolean network and its extensions-Fuzzy logic network (FLN). New Mathematics and Natural Computation 3(1) (2007) 68-87
-
(2007)
New Mathematics and Natural Computation
, vol.3
, Issue.1
, pp. 68-87
-
-
Cao, Y.1
Wang, P.P.2
Tokuta, A.3
-
3
-
-
33745622668
-
An effective structure learning method for constructing gene networks
-
X. Chen, G. Anantha, and X. Wang. An effective structure learning method for constructing gene networks. Bioinformatics 22(11) (2006) 1367-1374
-
(2006)
Bioinformatics
, vol.22
, Issue.11
, pp. 1367-1374
-
-
Chen, X.1
Anantha, G.2
Wang, X.3
-
4
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D. Fisher and H. J. Lenz, editors Springer-Verlag
-
D. M. Chickering. Learning Bayesian networks is NP-Complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V (Springer-Verlag, 1996), pages 121-130
-
(1996)
Learning from Data: Artificial Intelligence and Statistics
, vol.5
, pp. 121-130
-
-
Chickering, D.M.1
-
5
-
-
33847317508
-
Personalizing influence diagrams: Applying online learning strategies to dialogue management
-
D. M. Chickering and T. Paek. Personalizing influence diagrams: Applying online learning strategies to dialogue management. User Model. User-Adapt. Interact. 17(1-2) (2007) 71-91
-
(2007)
User Model. User-Adapt. Interact
, vol.17
, Issue.1-2
, pp. 71-91
-
-
Chickering, D.M.1
Paek, T.2
-
6
-
-
33749412683
-
Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints
-
R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7 (2006) 400
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 400
-
-
Dowell, R.D.1
Eddy, S.R.2
-
7
-
-
28244439117
-
Identification and control of gene networks in living organisms via supervised and unsupervised learning
-
March
-
M. E. Driscoll and T. S. Gardner. Identification and control of gene networks in living organisms via supervised and unsupervised learning. Journal of Process Control 16(3) (March 2006) 303-311
-
(2006)
Journal of Process Control
, vol.16
, Issue.3
, pp. 303-311
-
-
Driscoll, M.E.1
Gardner, T.S.2
-
9
-
-
84882267409
-
Evaluating clustering algorithms for genetic regulatory network structural inference
-
The Twenty-Ninth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI2009 Cambridge, UK December Springer-Verlag
-
C. Fogelberg and V. Palade. Evaluating clustering algorithms for genetic regulatory network structural inference. In Research and Development in Intelligent Systems XXVI: Proceedings of AI-2009, The Twenty-Ninth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI2009), volume 29,pages 137-150, Cambridge, UK, December 2009. Springer-Verlag
-
(2009)
Research and Development in Intelligent Systems XXVI: Proceedings of AI-2009
, vol.29
, pp. 137-150
-
-
Fogelberg, C.1
Palade, V.2
-
10
-
-
84879368999
-
Genetic regulatory networks: A review and a roadmap
-
A. Abraham, A.-E. Hassanien, A. Vasilakos, W. Pedrycz, F. Herrera, P. Siarry,A. de Carvalho, and A. P. Engelbrecht, editors Springer-Verlag Chapter 1:
-
C. Fogelberg and V. Palade. Genetic regulatory networks: A review and a roadmap. In A. Abraham, A.-E. Hassanien, A. Vasilakos, W. Pedrycz, F. Herrera, P. Siarry,A. de Carvalho, and A. P. Engelbrecht, editors, Foundations of Computational Intel-ligence (Springer-Verlag, 2009), Chapter 1:1.
-
(2009)
Foundations of Computational Intel-Ligence
, vol.1
-
-
Fogelberg, C.1
Palade, V.2
-
11
-
-
78751499701
-
Greensim: A network simulator for comprehensively validating and evaluating new machine learning techniques for network structural inference
-
Arras, France, October. IEEE Computer Society
-
C. Fogelberg and V. Palade. Greensim: A network simulator for comprehensively validating and evaluating new machine learning techniques for network structural inference. In IEEE ICTAI2010, volume 2, pages 225-230, Arras, France, October 2010. IEEE Computer Society
-
(2010)
IEEE ICTAI2010
, vol.2
, pp. 225-230
-
-
Fogelberg, C.1
Palade, V.2
-
12
-
-
52949086982
-
How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions
-
M. Forster and E. Sober. How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions. The British Journal for the Philosophy of Science 45(1) (1994) 1-35
-
(1994)
British Journal for the Philosophy of Science
, vol.45
, Issue.1
, pp. 1-35
-
-
Forster, M.1
Sober, E.2
-
13
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
D. H. Fisher, editor Morgan Kaufmann
-
N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In D. H. Fisher, editor, ICML (Morgan Kaufmann, 1997), pages 125-133
-
(1997)
ICML
, pp. 125-133
-
-
Friedman, N.1
-
14
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
UAI-98 San Francisco, CA Morgan Kaufmann
-
N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic probabilistic networks. In Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), volume 14, pages 139-147, San Francisco, CA, 1998. Morgan Kaufmann
-
(1998)
Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence
, vol.14
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
15
-
-
77951942959
-
Cross-species common regulatory network inference without requirement for prior gene affiliation
-
A. M. Gholami and K. Fellenberg. Cross-species common regulatory network inference without requirement for prior gene affiliation. Bioinformatics 26(8) (2010) 1082-1090
-
(2010)
Bioinformatics
, vol.26
, Issue.8
, pp. 1082-1090
-
-
Gholami, A.M.1
Fellenberg, K.2
-
16
-
-
35748977901
-
Universally sloppy parameter sensitivities in systems biology models
-
October
-
R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS Compututational Biology 3(10) (October 2007) e189
-
(2007)
PLoS Compututational Biology
, vol.3
, Issue.10
-
-
Gutenkunst, R.N.1
Waterfall, J.J.2
Casey, F.P.3
Brown, K.S.4
Myers, C.R.5
Sethna, J.P.6
-
17
-
-
33847059639
-
Size matters: Network inference tackles the genome scale
-
February
-
B. Hayete, T. S. Gardner, and J. J. Collins. Size matters: Network inference tackles the genome scale. Molecular Systems Biology 3(77) (February 2007) 1-3.
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.77
, pp. 1-3
-
-
Hayete, B.1
Gardner, T.S.2
Collins, J.J.3
-
18
-
-
0003846041
-
A tutorial on learning with Bayesian networks
-
Microsoft Research Redmond Washington
-
D. Heckerman. A tutorial on learning with Bayesian networks. Technical report, Microsoft Research, Redmond, Washington, 1995
-
(1995)
Technical Report
-
-
Heckerman, D.1
-
19
-
-
34250013587
-
Large-scale regulatory networkanalysis from microarray data: Modified Bayesian network learning and association rule mining
-
Z. Huang, J. Li, H. Su, G. S. Watts, and H. Chen. Large-scale regulatory networkanalysis from microarray data: Modified Bayesian network learning and association rule mining. Decision Support Systems 43(4) (2007) 1207-1225
-
(2007)
Decision Support Systems
, vol.43
, Issue.4
, pp. 1207-1225
-
-
Huang, Z.1
Li, J.2
Su, H.3
Watts, G.S.4
Chen, H.5
-
20
-
-
22544454210
-
Exploiting causal independence in large Bayesian networks
-
R. Jurgelenaite and P. J. F. Lucas. Exploiting causal independence in large Bayesian networks. Knowledge-Based Systems 18(4-5) (2005) 153-162
-
(2005)
Knowledge-Based Systems
, vol.18
, Issue.4-5
, pp. 153-162
-
-
Jurgelenaite, R.1
Lucas, P.J.F.2
-
22
-
-
0038047901
-
On learning gene regulatory networks under the Boolean network model
-
H. L ähdesm äki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks under the Boolean network model. Machine Learning 52(1-2) (2003) 147-167
-
(2003)
Machine Learning
, vol.52
, Issue.1-2
, pp. 147-167
-
-
Lähdesmäki, H.1
Shmulevich, I.2
Yli-Harja, O.3
-
23
-
-
2342533144
-
Fusion of domain knowledge with data for structural learning in object oriented domains
-
H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural learning in object oriented domains. Journal of Machine Learning Research, 4:339-368, 2003
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 339-368
-
-
Langseth, H.1
Nielsen, T.D.2
-
24
-
-
80053136667
-
A theoretical study of y structures for causal discovery
-
UAI-06 Arlington, Virginia AUAI Press
-
S. Mani, P. Spirtes, and G. Cooper. A theoretical study of Y structures for causal discovery. In Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), pages 314-323, Arlington, Virginia,2006. AUAI Press
-
(2006)
Proceedings of the Twenty-Second Conference Annual Conference on Uncertainty in Artificial Intelligence
, pp. 314-323
-
-
Mani, S.1
Spirtes, P.2
Cooper, G.3
-
25
-
-
77955851238
-
Developing large-scale Bayesian networks by composition: Fault diagnosis of electrical power systems in aircraft and spacecraft
-
SAS: Reasoning and Integration Challenges
-
O. J. Mengshoel, S. Poll, and T. Kurtoglu. Developing large-scale Bayesian networks by composition: Fault diagnosis of electrical power systems in aircraft and spacecraft. In Proc. of the IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration Challenges, 2009
-
(2009)
Proc. of the IJCAI-09 Workshop on Self-* And Autonomous Systems
-
-
Mengshoel, O.J.1
Poll, S.2
Kurtoglu, T.3
-
26
-
-
84879338839
-
Modeling temporal biomedical data by SRL
-
J. Ramon, F. Costa C. Costa, and J. Kok, editors Antwerp, Belgium September
-
S. Natarajan, I. Ong, D. Haight, D. Page, and V. S. Costa. Modeling temporal biomedical data by SRL. In J. Ramon, F. Costa, C. Costa, and J. Kok, editors,ECML08 Workshop on Statistical and Relational Learning in Bioinformatics (StReBio), Antwerp, Belgium, September 2008
-
(2008)
ECML08 Workshop on Statistical and Relational Learning in Bioinformatics Strebio
-
-
Natarajan, S.1
Ong, I.2
Haight, D.3
Page, D.4
Costa, V.S.5
-
28
-
-
70349961718
-
On discriminative parameter learning of Bayesian network classifiers
-
W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors of Lecture Notes in Computer Science Springer
-
F. Pernkopf and M. Wohlmayr. On discriminative parameter learning of Bayesian network classifiers. In W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors, ECML/PKDD (2), volume 5782 of Lecture Notes in Computer Science,pages 221-237. Springer, 2009
-
(2009)
ECML/PKDD 2
, vol.5782
, pp. 221-237
-
-
Pernkopf, F.1
Wohlmayr, M.2
-
29
-
-
0347135946
-
Whole-genome discovery of transcription factor binding sites by network-level conservation
-
January
-
M. Pritsker, Y.-C. Liu, M. A. Beer, and S. Tavazoie. Whole-genome discovery of transcription factor binding sites by network-level conservation. Genome Research 14(1) (January 2004) 99-108
-
(2004)
Genome Research
, vol.14
, Issue.1
, pp. 99-108
-
-
Pritsker, M.1
Liu, Y.-C.2
Beer, M.A.3
Tavazoie, S.4
-
30
-
-
33746067911
-
Integrated biclustering of heterogeneous genomewide datasets for the inference of global regulatory networks
-
D. Reiss, N. Baliga, and R. Bonneau. Integrated biclustering of heterogeneous genomewide datasets for the inference of global regulatory networks. BMC Bioinformatics 7(1) (2006) 280
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 280
-
-
Reiss, D.1
Baliga, N.2
Bonneau, R.3
-
31
-
-
70349532977
-
Scalable learning of large networks
-
September
-
S. Roy, S. Plis, M. Werner-Washburne, and T. Lane. Scalable learning of large networks. Systems Biology, IET 3(5) (September 2009) 404-413
-
(2009)
Systems Biology IET
, vol.3
, Issue.5
, pp. 404-413
-
-
Roy, S.1
Plis, S.2
Werner-Washburne, M.3
Lane, T.4
-
32
-
-
14844307659
-
Modelling gene networks at different organisational levels
-
March
-
T. Schlitt and A. Brazma. Modelling gene networks at different organisational levels. FEBS Letters 579 (March 2005) 1859-1866
-
(2005)
FEBS Letters
, vol.579
, pp. 1859-1866
-
-
Schlitt, T.1
Brazma, A.2
-
33
-
-
45149101194
-
Current approaches to gene regulatory network modelling
-
T. Schlitt and A. Brazma. Current approaches to gene regulatory network modelling. BMC Bioinformatics 8 Suppl 6 (2007
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 6
-
-
Schlitt, T.1
Brazma, A.2
-
36
-
-
0242569305
-
Large-scale computational modeling of genetic regulatory networks
-
October
-
M. Stetter, G. Deco, and M. Dejori. Large-scale computational modeling of genetic regulatory networks. Artificial Intelligence Review 20(1-2) (October 2003) 75-93
-
(2003)
Artificial Intelligence Review
, vol.20
, Issue.1-2
, pp. 75-93
-
-
Stetter, M.1
Deco, G.2
Dejori, M.3
-
37
-
-
0037687416
-
Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
-
USA May
-
J. Tegner, M. K. Yeung, J. Hasty, and J. J. Collins. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences, USA, 100(10):5944-5949, May 2003
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.10
, pp. 5944-5949
-
-
Tegner, J.1
Yeung, M.K.2
Hasty, J.3
Collins, J.J.4
-
38
-
-
16844374192
-
Using Bayesian network inference algorithms to recover molecular genetic regulatory networks
-
ICSB02 December
-
J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In International Conference on Systems Biology (ICSB02), December 2002
-
(2002)
International Conference on Systems Biology
-
-
Yu, J.1
Smith, V.A.2
Wang, P.P.3
Hartemink, A.J.4
Jarvis, E.D.5
-
39
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18) (2004) 3594-3603
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.A.2
Wang, P.P.3
Hartemink, A.J.4
Jarvis, E.D.5
-
40
-
-
48049121994
-
Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data
-
H. R. Arabnia and H. Valafar, editors CSREA Press
-
Y. Zhang, Z. Deng, H. Jiang, and P. Jia. Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data. In H. R. Arabnia and H. Valafar, editors, BIOCOMP (CSREA Press, 2006), pages 41-47
-
(2006)
BIOCOMP
, pp. 41-47
-
-
Zhang, Y.1
Deng, Z.2
Jiang, H.3
Jia, P.4
-
41
-
-
80053422573
-
A systematic comparison of phrase-based, hierarchical and syntax-augmented statistical MT
-
D. Scott and H. Uszkoreit editors
-
A. Zollmann, A. Venugopal, F. J. Och, and J. M. Ponte. A systematic comparison of phrase-based, hierarchical and syntax-augmented statistical MT. In D. Scott and H. Uszkoreit, editors, COLING (2008), pages 1145-1152
-
(2008)
Coling
, pp. 1145-1152
-
-
Zollmann, A.1
Venugopal, A.2
Och, F.J.3
Ponte, J.M.4
-
43
-
-
0038784279
-
Bayesian network structures and inference techniques for automatic speech recognition
-
G. G. Zweig. Bayesian network structures and inference techniques for automatic speech recognition. Computer Speech and Language 17 (2003) 173-193
-
(2003)
Computer Speech and Language
, vol.17
, pp. 173-193
-
-
Zweig, G.G.1
|