메뉴 건너뛰기




Volumn 22, Issue 3, 2013, Pages

Dense structural expectation maximisation with parallelisation for efficient large-network structural inference

Author keywords

Bayesian networks; large networks; parallelisation; SEM; structural inference

Indexed keywords

EXPECTATION-MAXIMISATION; LARGE NETWORKS; PARALLELISATION; SEM ALGORITHMS; STRUCTURAL INFERENCE;

EID: 84879388040     PISSN: 02182130     EISSN: 17936349     Source Type: Journal    
DOI: 10.1142/S0218213013500115     Document Type: Article
Times cited : (2)

References (43)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov and F. Csaki, editors
    • H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, 2nd International Symposium on Information Theory, pages 267-281, 1973
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 65749085584 scopus 로고    scopus 로고
    • Reverse engineering of NK boolean network and its extensions-fuzzy logic network FLN
    • Y. Cao, P. P.Wang, and A. Tokuta. Reverse engineering of NK boolean network and its extensions-Fuzzy logic network (FLN). New Mathematics and Natural Computation 3(1) (2007) 68-87
    • (2007) New Mathematics and Natural Computation , vol.3 , Issue.1 , pp. 68-87
    • Cao, Y.1    Wang, P.P.2    Tokuta, A.3
  • 3
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • X. Chen, G. Anantha, and X. Wang. An effective structure learning method for constructing gene networks. Bioinformatics 22(11) (2006) 1367-1374
    • (2006) Bioinformatics , vol.22 , Issue.11 , pp. 1367-1374
    • Chen, X.1    Anantha, G.2    Wang, X.3
  • 4
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • D. Fisher and H. J. Lenz, editors Springer-Verlag
    • D. M. Chickering. Learning Bayesian networks is NP-Complete. In D. Fisher and H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V (Springer-Verlag, 1996), pages 121-130
    • (1996) Learning from Data: Artificial Intelligence and Statistics , vol.5 , pp. 121-130
    • Chickering, D.M.1
  • 5
    • 33847317508 scopus 로고    scopus 로고
    • Personalizing influence diagrams: Applying online learning strategies to dialogue management
    • D. M. Chickering and T. Paek. Personalizing influence diagrams: Applying online learning strategies to dialogue management. User Model. User-Adapt. Interact. 17(1-2) (2007) 71-91
    • (2007) User Model. User-Adapt. Interact , vol.17 , Issue.1-2 , pp. 71-91
    • Chickering, D.M.1    Paek, T.2
  • 6
    • 33749412683 scopus 로고    scopus 로고
    • Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints
    • R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7 (2006) 400
    • (2006) BMC Bioinformatics , vol.7 , pp. 400
    • Dowell, R.D.1    Eddy, S.R.2
  • 7
    • 28244439117 scopus 로고    scopus 로고
    • Identification and control of gene networks in living organisms via supervised and unsupervised learning
    • March
    • M. E. Driscoll and T. S. Gardner. Identification and control of gene networks in living organisms via supervised and unsupervised learning. Journal of Process Control 16(3) (March 2006) 303-311
    • (2006) Journal of Process Control , vol.16 , Issue.3 , pp. 303-311
    • Driscoll, M.E.1    Gardner, T.S.2
  • 9
    • 84882267409 scopus 로고    scopus 로고
    • Evaluating clustering algorithms for genetic regulatory network structural inference
    • The Twenty-Ninth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI2009 Cambridge, UK December Springer-Verlag
    • C. Fogelberg and V. Palade. Evaluating clustering algorithms for genetic regulatory network structural inference. In Research and Development in Intelligent Systems XXVI: Proceedings of AI-2009, The Twenty-Ninth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI2009), volume 29,pages 137-150, Cambridge, UK, December 2009. Springer-Verlag
    • (2009) Research and Development in Intelligent Systems XXVI: Proceedings of AI-2009 , vol.29 , pp. 137-150
    • Fogelberg, C.1    Palade, V.2
  • 10
    • 84879368999 scopus 로고    scopus 로고
    • Genetic regulatory networks: A review and a roadmap
    • A. Abraham, A.-E. Hassanien, A. Vasilakos, W. Pedrycz, F. Herrera, P. Siarry,A. de Carvalho, and A. P. Engelbrecht, editors Springer-Verlag Chapter 1:
    • C. Fogelberg and V. Palade. Genetic regulatory networks: A review and a roadmap. In A. Abraham, A.-E. Hassanien, A. Vasilakos, W. Pedrycz, F. Herrera, P. Siarry,A. de Carvalho, and A. P. Engelbrecht, editors, Foundations of Computational Intel-ligence (Springer-Verlag, 2009), Chapter 1:1.
    • (2009) Foundations of Computational Intel-Ligence , vol.1
    • Fogelberg, C.1    Palade, V.2
  • 11
    • 78751499701 scopus 로고    scopus 로고
    • Greensim: A network simulator for comprehensively validating and evaluating new machine learning techniques for network structural inference
    • Arras, France, October. IEEE Computer Society
    • C. Fogelberg and V. Palade. Greensim: A network simulator for comprehensively validating and evaluating new machine learning techniques for network structural inference. In IEEE ICTAI2010, volume 2, pages 225-230, Arras, France, October 2010. IEEE Computer Society
    • (2010) IEEE ICTAI2010 , vol.2 , pp. 225-230
    • Fogelberg, C.1    Palade, V.2
  • 12
    • 52949086982 scopus 로고
    • How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions
    • M. Forster and E. Sober. How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions. The British Journal for the Philosophy of Science 45(1) (1994) 1-35
    • (1994) British Journal for the Philosophy of Science , vol.45 , Issue.1 , pp. 1-35
    • Forster, M.1    Sober, E.2
  • 13
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • D. H. Fisher, editor Morgan Kaufmann
    • N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In D. H. Fisher, editor, ICML (Morgan Kaufmann, 1997), pages 125-133
    • (1997) ICML , pp. 125-133
    • Friedman, N.1
  • 15
    • 77951942959 scopus 로고    scopus 로고
    • Cross-species common regulatory network inference without requirement for prior gene affiliation
    • A. M. Gholami and K. Fellenberg. Cross-species common regulatory network inference without requirement for prior gene affiliation. Bioinformatics 26(8) (2010) 1082-1090
    • (2010) Bioinformatics , vol.26 , Issue.8 , pp. 1082-1090
    • Gholami, A.M.1    Fellenberg, K.2
  • 17
    • 33847059639 scopus 로고    scopus 로고
    • Size matters: Network inference tackles the genome scale
    • February
    • B. Hayete, T. S. Gardner, and J. J. Collins. Size matters: Network inference tackles the genome scale. Molecular Systems Biology 3(77) (February 2007) 1-3.
    • (2007) Molecular Systems Biology , vol.3 , Issue.77 , pp. 1-3
    • Hayete, B.1    Gardner, T.S.2    Collins, J.J.3
  • 18
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Microsoft Research Redmond Washington
    • D. Heckerman. A tutorial on learning with Bayesian networks. Technical report, Microsoft Research, Redmond, Washington, 1995
    • (1995) Technical Report
    • Heckerman, D.1
  • 19
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory networkanalysis from microarray data: Modified Bayesian network learning and association rule mining
    • Z. Huang, J. Li, H. Su, G. S. Watts, and H. Chen. Large-scale regulatory networkanalysis from microarray data: Modified Bayesian network learning and association rule mining. Decision Support Systems 43(4) (2007) 1207-1225
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Li, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 20
    • 22544454210 scopus 로고    scopus 로고
    • Exploiting causal independence in large Bayesian networks
    • R. Jurgelenaite and P. J. F. Lucas. Exploiting causal independence in large Bayesian networks. Knowledge-Based Systems 18(4-5) (2005) 153-162
    • (2005) Knowledge-Based Systems , vol.18 , Issue.4-5 , pp. 153-162
    • Jurgelenaite, R.1    Lucas, P.J.F.2
  • 22
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network model
    • H. L ähdesm äki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks under the Boolean network model. Machine Learning 52(1-2) (2003) 147-167
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 147-167
    • Lähdesmäki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 23
    • 2342533144 scopus 로고    scopus 로고
    • Fusion of domain knowledge with data for structural learning in object oriented domains
    • H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural learning in object oriented domains. Journal of Machine Learning Research, 4:339-368, 2003
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 339-368
    • Langseth, H.1    Nielsen, T.D.2
  • 25
    • 77955851238 scopus 로고    scopus 로고
    • Developing large-scale Bayesian networks by composition: Fault diagnosis of electrical power systems in aircraft and spacecraft
    • SAS: Reasoning and Integration Challenges
    • O. J. Mengshoel, S. Poll, and T. Kurtoglu. Developing large-scale Bayesian networks by composition: Fault diagnosis of electrical power systems in aircraft and spacecraft. In Proc. of the IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration Challenges, 2009
    • (2009) Proc. of the IJCAI-09 Workshop on Self-* And Autonomous Systems
    • Mengshoel, O.J.1    Poll, S.2    Kurtoglu, T.3
  • 28
    • 70349961718 scopus 로고    scopus 로고
    • On discriminative parameter learning of Bayesian network classifiers
    • W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors of Lecture Notes in Computer Science Springer
    • F. Pernkopf and M. Wohlmayr. On discriminative parameter learning of Bayesian network classifiers. In W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, editors, ECML/PKDD (2), volume 5782 of Lecture Notes in Computer Science,pages 221-237. Springer, 2009
    • (2009) ECML/PKDD 2 , vol.5782 , pp. 221-237
    • Pernkopf, F.1    Wohlmayr, M.2
  • 29
    • 0347135946 scopus 로고    scopus 로고
    • Whole-genome discovery of transcription factor binding sites by network-level conservation
    • January
    • M. Pritsker, Y.-C. Liu, M. A. Beer, and S. Tavazoie. Whole-genome discovery of transcription factor binding sites by network-level conservation. Genome Research 14(1) (January 2004) 99-108
    • (2004) Genome Research , vol.14 , Issue.1 , pp. 99-108
    • Pritsker, M.1    Liu, Y.-C.2    Beer, M.A.3    Tavazoie, S.4
  • 30
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genomewide datasets for the inference of global regulatory networks
    • D. Reiss, N. Baliga, and R. Bonneau. Integrated biclustering of heterogeneous genomewide datasets for the inference of global regulatory networks. BMC Bioinformatics 7(1) (2006) 280
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 280
    • Reiss, D.1    Baliga, N.2    Bonneau, R.3
  • 32
    • 14844307659 scopus 로고    scopus 로고
    • Modelling gene networks at different organisational levels
    • March
    • T. Schlitt and A. Brazma. Modelling gene networks at different organisational levels. FEBS Letters 579 (March 2005) 1859-1866
    • (2005) FEBS Letters , vol.579 , pp. 1859-1866
    • Schlitt, T.1    Brazma, A.2
  • 33
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modelling
    • T. Schlitt and A. Brazma. Current approaches to gene regulatory network modelling. BMC Bioinformatics 8 Suppl 6 (2007
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Schlitt, T.1    Brazma, A.2
  • 36
    • 0242569305 scopus 로고    scopus 로고
    • Large-scale computational modeling of genetic regulatory networks
    • October
    • M. Stetter, G. Deco, and M. Dejori. Large-scale computational modeling of genetic regulatory networks. Artificial Intelligence Review 20(1-2) (October 2003) 75-93
    • (2003) Artificial Intelligence Review , vol.20 , Issue.1-2 , pp. 75-93
    • Stetter, M.1    Deco, G.2    Dejori, M.3
  • 37
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • USA May
    • J. Tegner, M. K. Yeung, J. Hasty, and J. J. Collins. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences, USA, 100(10):5944-5949, May 2003
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.10 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 39
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18) (2004) 3594-3603
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 40
    • 48049121994 scopus 로고    scopus 로고
    • Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data
    • H. R. Arabnia and H. Valafar, editors CSREA Press
    • Y. Zhang, Z. Deng, H. Jiang, and P. Jia. Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data. In H. R. Arabnia and H. Valafar, editors, BIOCOMP (CSREA Press, 2006), pages 41-47
    • (2006) BIOCOMP , pp. 41-47
    • Zhang, Y.1    Deng, Z.2    Jiang, H.3    Jia, P.4
  • 41
    • 80053422573 scopus 로고    scopus 로고
    • A systematic comparison of phrase-based, hierarchical and syntax-augmented statistical MT
    • D. Scott and H. Uszkoreit editors
    • A. Zollmann, A. Venugopal, F. J. Och, and J. M. Ponte. A systematic comparison of phrase-based, hierarchical and syntax-augmented statistical MT. In D. Scott and H. Uszkoreit, editors, COLING (2008), pages 1145-1152
    • (2008) Coling , pp. 1145-1152
    • Zollmann, A.1    Venugopal, A.2    Och, F.J.3    Ponte, J.M.4
  • 43
    • 0038784279 scopus 로고    scopus 로고
    • Bayesian network structures and inference techniques for automatic speech recognition
    • G. G. Zweig. Bayesian network structures and inference techniques for automatic speech recognition. Computer Speech and Language 17 (2003) 173-193
    • (2003) Computer Speech and Language , vol.17 , pp. 173-193
    • Zweig, G.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.